源荷两端不确定性的跨区系统运行策略研究

闫斯哲, 王维庆, 王海云, 武家辉, 李笑竹, 戚元星

太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 8-16.

PDF(2151 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2151 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 8-16. DOI: 10.19912/j.0254-0096.tynxb.2020-1325

源荷两端不确定性的跨区系统运行策略研究

  • 闫斯哲, 王维庆, 王海云, 武家辉, 李笑竹, 戚元星
作者信息 +

RESEARCH ON OPERATION STRATEGY OF CROSS REGIONAL SYSTEM WITH UNCERTAINTY AT BOTH ENDS OF POWER SUPPLY AND LOAD

  • Yan Sizhe, Wang Weiqing, Wang Haiyun, Wu Jiahui, Li Xiaozhu, Qi Yuanxing
Author information +
文章历史 +

摘要

针对传统跨区互联导致的源端可再生能源无法消纳而引起的大规模弃风弃光现象,建立一个计及源荷两端不确定性的动态环境经济跨区调度模型。该模型考虑各区域的发电成本及污染气体排放成本,将联络线作为可调资源,在保证各区域安全稳定运行的前提下,利用概率密度函数描述发、用电功率的不确定性,使模型更贴合实际生产。同时针对模型特点,提出基于滤子技术的自适应蝴蝶算法对其进行求解。算例仿真结果表明:当可再生能源渗透率达到40%时,较小的柔性负荷占比对系统调度成本影响显著,且也能显著改善污染排放;研究结果兼顾调度成本最小的同时减少污染排放,具有一定理论指导意义。

Abstract

Aiming at the phenomenon of large-scale wind and light abandoning caused by the traditional cross-regional interconnection, a dynamic environmental economic cross-regional dispatch model that takes into account the uncertainties at both ends of the source and load is established. This model takes the tie line as an adjustable resource and considers the cost of power generation and pollutant gas emission in each region on the premise of ensuring the safe and stable operation of each region, and uses probability density function to fit renewable energy and load, solves the uncertainty problem at both ends of source and load, so as to make the model more close to the actual production. According to the characteristics of the model, an adaptive butterfly algorithm based on filter technology is proposed to solve it. The simulation results show that when the penetration rate of renewable energy reaches 40%, the relatively small flexible load has a significant impact on the system scheduling cost, and pollution emission is also significantly improved. The research results have certain theoretical guiding significance, taking into account the minimum scheduling cost and reducing pollution emissions at the same time.

关键词

电力系统互联 / 成本降低 / 自适应算法 / 多区域

Key words

electric power system interconnection / cost reduction / adaptive algorithms / multiple zones

引用本文

导出引用
闫斯哲, 王维庆, 王海云, 武家辉, 李笑竹, 戚元星. 源荷两端不确定性的跨区系统运行策略研究[J]. 太阳能学报. 2022, 43(8): 8-16 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1325
Yan Sizhe, Wang Weiqing, Wang Haiyun, Wu Jiahui, Li Xiaozhu, Qi Yuanxing. RESEARCH ON OPERATION STRATEGY OF CROSS REGIONAL SYSTEM WITH UNCERTAINTY AT BOTH ENDS OF POWER SUPPLY AND LOAD[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 8-16 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1325
中图分类号: TM734   

参考文献

[1] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11.
KANG C Q, YAO L Z.Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of electric power systems, 2017, 41(9): 2-11.
[2] 艾芊, 郝然. 多能互补、集成优化能源系统关键技术及挑战[J]. 电力系统自动化, 2018, 42(4): 2-10.
AI Q, HAO R.Key technologies and challenges for multi-energy complementarity and optimization of integrated energy system[J]. Automation of electric power systems, 2018, 42(4): 2-10.
[3] 贾宏杰, 王丹, 徐宪东, 等. 区域综合能源系统若干问题研究[J]. 电力系统自动化, 2015, 39(7): 198-207.
JIA H J, WANG D, XU X D, et al.Research on some key problems related to integrated energy systems[J]. Automation of electric power systems, 2015, 39(7): 198-207.
[4] 刘振亚, 张启平, 董存, 等. 通过特高压直流实现大型能源基地风、光、火电力大规模高效率安全外送研究[J]. 中国电机工程学报, 2014, 34(16): 2513-2522.
LIU Z Y, ZHANG Q P, DONG C, et al.Efficient and security transmission of wind, photovoltaic and thermal power of large-scale energy resource bases through UHVDC projects[J]. Proceedings of the CSEE, 2014, 34(16): 2513-2522.
[5] YI B W, XU J H, FAN Y.Inter regional power grid planning up to 2030 in China considering renewable energy development and regional pollutant control a multi-region bottom-up optimization model[J]. Applied energy, 2016, 184: 641-658.
[6] 朱凌志, 陈宁, 韩华玲. 风电消纳关键问题及应对措施分析[J]. 电力系统自动化, 2011, 35(22): 29-34.
ZHU L Z, CHEN N, HAN H L.Key problems and solutions of wind power accommodation[J]. Automation of electric power systems, 2011, 35(22): 29-34.
[7] YING L, LUKSZ0 Z, MARGOT W. The impact of inter- regional transmission grid expansion on China's power sector decarbonization[J]. Applied energy, 2016, 183: 853-873.
[8] 郑亚先, 程海花, 杨争林, 等. 计及清洁能源的跨区跨省交易路径优化建模与算法[J]. 电力系统自动化, 2017, 41(24): 112-119.
ZHENG Y X, CHENG H H, YANG Z L, et al.Path-optimized modeling and algorithm for trans-regional and trans-provincial electricity trading considering clean energy[J]. Automation of electric power systems, 2017, 41(24): 112-119.
[9] 牟澎涛, 赵冬梅, 王嘉成. 大规模风电接入对系统功角稳定影响的机理分析[J]. 中国电机工程学报, 2017, 37(5): 1324-4332.
MOU P T, ZHAO D M, WANG J C.Influence mechanism analysis of large scale wind power integration on power system angle stability[J]. Proceedings of the CSEE, 2017, 37(5): 1324-1332.
[10] BAO Y Q, LI Y, WANG B B, et al.Day-ahead scheduling considering demand response as a frequency control resource[J]. Energies, 2017, 10(1): 82.
[11] 周霞, 崔晓丹, 李威, 等. 提高断面输电能力的紧急控制措施风险量化评估方法[J]. 电力系统自动化, 2014, 38(10): 30-35.
ZHOU X, CUI X D, LI W, et al.Risk quantitative assessment of emergency control measures to improve power grid transmission capacity[J]. Automation of electric power systems, 2014, 38(10): 30-35.
[12] YUE Y, LIU T Q, HE C.Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems[J]. Energy, 2019, 187: 115944.
[13] LIANG J, ZUO Y, ZHANG Y Z, et al.Energy-saving economic dispatch of wind power grid connection based on renewable energy quota system[J]. Power system technology, 2019, 43(7): 2528-2534.
[14] 曾方迪, 李更丰, 别朝红, 等. 考虑跨区联络线交易计划的多区域互联系统分散调度方法[J]. 电力系统自动化, 2018, 42(16): 32-40.
ZENG F D, LI G F, BIE Z H, et al.Decentralized dispatch method for multi-area interconnected power systems considering cross-area tie-line transaction strategy[J]. Automation of electric power systems, 2018, 42(16): 32-40.
[15] 焦春亭, 管晓宏, 吴江, 等. 考虑大规模风电跨区消纳的电力系统调度[C]//2014中国控制会议, 南京, 中国, 2014.
JIAO C T, GUAN X H, WU J, et al.Consider large-scale cross-regional wind power system scheduling[C]//2014 China Control Conference, Nanjing, China, 2014.
[16] 韩红卫, 涂孟夫, 张慧玲, 等. 考虑跨区直流调峰的日前发电计划优化方法及分析[J]. 电力系统自动化, 2015, 39(16): 138-143.
HAN H W, TU M F, ZHANG H L, et al.Day-ahead generation scheduling method considering adjustable HVDC plan and its analysis[J]. Automation of electric power systems, 2015, 39(16): 138-143.
[17] 任建文, 许英强, 易琛. 考虑直流联络线功率调整的跨区风电消纳模型[J]. 电力建设, 2017, 38(11): 129-135.
REN J W, XU Y Q, YI C.Cross-regional wind power consumption model considering power adjustment of DC tie-line[J]. Electric power construction, 2017, 38(11): 129-135.
[18] 孙惠娟, 蒙锦辉, 彭春华. 风/光/水/碳捕集多区域虚拟电厂协调优化调度[J]. 电网技术, 2019, 43(11): 4040-4051.
SUN H J, MENG J H, PENG C H.Coordinated optimization scheduling of multi-region virtual power plant with wind power/photovoltaic/hydropower/carbon-capture units[J]. Power system technology, 2019, 43(11): 4040-4051.
[19] BASU M.Particle swarm optimization based goal-attainment method for dynamic economic emission dispatch[J]. Electric power components and systems, 2006, 34(9): 1015-1025.
[20] BASU M.Dynamic economic emission dispatch using evolutionary programming and fuzzy satisfying method[J]. International journal of emerging electric power systems, 2007, 8(4): 1-15.
[21] PANDIT N, TRIPATHI A, TAPASWI S, et al.Static/ dynamic environmental economic dispatch employing chaotic micro bacterial foraging algorithm[C]//Swarm, Evolutionary, and Memetic Computing-Second International Conference, Berlin, Germany: Springer, 2011: 585-592.
[22] 朱志键, 王杰. 基于改进NSGA-Ⅱ的电力系统动态环境经济调度[J]. 电力自动化设备, 2017, 37(2): 176-183.
ZHU Z J, WANG J.Economic dispatch of power system dynamic environment Based on improved NSGA-Ⅱ[J]. Electric power automation equipment, 2017, 37(2): 176-183.
[23] 刘刚, 朱永利, 蒋伟. 基于混合DE-PSO多目标算法的动态环境经济调度[J]. 电力自动化设备, 2018, 38(8): 65-72.
LIU G, ZHU Y L, JIANG W.Dynamic environmental economic dispatch based on hybrid DE-PSO multi-objective algorithm[J]. Electric power automation equipment, 2018, 38(8): 65-72.
[24] LI X Z, WANG W Q, WANG H Y.Dynamic environmental economic dispatch of hybrid renewable energy systems based on tradable green certificates[J]. Energy, 2019, 193: 116699.
[25] 李笑竹, 王维庆, 王海云, 等. 考虑源荷双侧不确定性的跨区域灵活性鲁棒优化运行策略[J]. 高电压技术, 2020, 46(5): 1548-1559.
LI X Z, WANG W Q, WANG H Y, et al.Robust optimized strategy for cross-region flexibility with bilateral uncertainty of load source[J]. High voltage engineering, 2020, 46(5): 1548-1559.
[26] SINGH B, ANAND P.A novel adaptive butterfly optimization algorithm[J]. International journal of computational materials science and engineering, 2019,7(4): 1850026.
[27] 廖志鹏. 基于改进粒子群算法的微电网优化运行研究[D]. 南昌: 南昌大学, 2019.
LIAO Z P.Research on microgrid optimization based on improved particle swarm optimization algorithm[D]. Nanchang: Nanchang University, 2019.

基金

新疆维吾尔自治区重点实验室开放课题(2018D04005); 国家自然科学基金(52067020); 新疆维吾尔自治区教育厅重点项目(XJEDU2019I009)

PDF(2151 KB)

Accesses

Citation

Detail

段落导航
相关文章

/