基于EVMD和布谷鸟算法的短期风功率区间预测

张亚刚, 赵云鹏, 王思祺

太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 292-299.

PDF(1738 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1738 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 292-299. DOI: 10.19912/j.0254-0096.tynxb.2020-1333

基于EVMD和布谷鸟算法的短期风功率区间预测

  • 张亚刚, 赵云鹏, 王思祺
作者信息 +

SHORT TERM WIND POWER INTERVAL PREDICTION BASED ON EVMD AND CUCKOO ALGORITHM

  • Zhang Yagang, Zhao Yunpeng, Wang Siqi
Author information +
文章历史 +

摘要

为提高短期风功率预测精度和预测的可控性,提出一种基于能量差优化变分模态分解和布谷鸟优化组合神经网络的短期风功率预测模型。采用能量差优化变分模态分解(EVMD)的模态数,将EVMD用于短期风功率分解,基于EVMD分解序列的不同模态特点,对非线性序列采用布谷鸟优化反向传播神经网络(CS-BPNN),对平稳序列采用自回归滑动平均模型(ARMA),并重构加权得到点预测值,并基于EVMD分解所丢失的序列信息构建核密度估计,在点预测模型的基础上,进行风功率的区间预测。将所提预测方法用于澳大利亚风电场的实际算例,实验结果表明,该方法可提高短期风功率预测的准确性。

Abstract

In order to improve the accuracy and controllability of short-term wind power prediction, a short-term wind power prediction model based on energy difference optimal variational mode decomposition and cuckoo optimal combination neural network is proposed. The energy difference is used to optimize the number of modes of the variational modal decomposition (EVMD), and EVMD is used for short-term wind power decomposition. Based on the different modal characteristics of the EVMD decomposition sequence, a cuckoo optimized back propagation neural network is used for the nonlinear sequence (CS-BPNN). The autoregressive moving average model (ARMA) is used for the stationary series, and the weighted point prediction value is reconstructed. The kernel density estimation is constructed based on the sequence information lost by EVMD decomposition. Based on the point prediction model, the interval prediction of wind power is carried out. The proposed prediction method is applied to a practical example of wind farms in Australia. The experimental results show that the method can improve the accuracy of short-term wind power prediction.

关键词

风功率 / 预测 / 信号处理 / EVMD / 神经网络 / 布谷鸟算法

Key words

wind power / forecasting / signal processing / EVMD / neural network / cuckoo algorithm

引用本文

导出引用
张亚刚, 赵云鹏, 王思祺. 基于EVMD和布谷鸟算法的短期风功率区间预测[J]. 太阳能学报. 2022, 43(8): 292-299 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1333
Zhang Yagang, Zhao Yunpeng, Wang Siqi. SHORT TERM WIND POWER INTERVAL PREDICTION BASED ON EVMD AND CUCKOO ALGORITHM[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 292-299 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1333
中图分类号: TM773   

参考文献

[1] NAIK J, DASH P K, DHAR S.A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based multi-kernel robust ridge regression[J]. Renewable energy, 2019: 136: 701-731.
[2] 王贺, 胡志坚, 陈珍, 等. 基于集合经验模态分解和小波神经网络的短期风功率组合预测[J]. 电工技术学报, 2013, 28(9): 137-144.
WANG H, HU Z J, CHEN Z, et al.Short term wind power combination prediction based on ensemble empirical mode decomposition and wavelet neural network[J]. Journal of electrical technology, 2013, 28(9): 137-144.
[3] GU J, WANG Y N, XIE D, et al.Wind farm NWP data preprocessing method based on t-SNE[J]. Energies, 2019, 12(19): 3622.
[4] 牛东晓, 纪会争. 风电功率物理预测模型引入误差量化分析方法[J]. 电力系统自动化, 2020, 44(8): 57-65.
NIU D X, JI H Z.Quantitative analysis method for errors introduced by physical prediction model of wind power[J]. Automation of electric power systems, 2020, 44(8): 57-65.
[5] MOHAMMED E, YU J L, WANG S Y, et al.Assessment of wind power prediction using hybrid method and comparison with different models[J]. Journal of electrical engineering & technology, 2018, 13(3): 1089-1098.
[6] 杨锡运, 马雪, 张洋, 等. 基于EMD与加权马尔可夫链QR法的风电功率区间预测[J]. 太阳能学报, 2020, 41(2): 66-72.
YANG X Y, MA X, ZHANG Y, et al.Wind power interval prediction based on EMD and weighted Markov chain QR method[J]. Acta energiae solaris sinica, 2020, 41(2): 66-72.
[7] DO D-P N,LEE Y C, CHOI J. Hourly average wind speed simulation and forecast based on ARMA model in Jeju Island, Korea[J]. Journal of electrical engineering & technology, 2016, 11(6): 1548-1555.
[8] 叶林, 滕景竹, 蓝海波, 等. 变尺度时间窗口和波动特征提取的短期风电功率组合预测[J]. 电力系统自动化, 2017, 41(17): 29-36, 59.
YE L, TENG J Z, LAN H B, et al.Short term wind power combination forecasting based on variable scale time window and fluctuation feature extraction[J]. Power system automation, 2017, 41(17): 29-36, 59.
[9] XU W F, LIU P, CHENG L, et al.Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy[J]. Renewable energy, 2021, 163: 772-782.
[10] LO C S, TANG G, XUE X M, et al.The short-term interval prediction of wind power using the deep learning model with gradient descend optimization[J]. Renewable energy, 2020, 155: 197-211.
[11] 王伟胜, 王铮, 董存, 等. 中国短期风电功率预测技术现状与误差分析[J]. 电力系统自动化, 2021, 45(1): 17-29.
WANG W S, WANG Z, DONG C, et al.Current situation and error analysis of short-term wind power forecasting technology in China[J]. Power system automation, 2021, 45(1): 17-29.
[12] 黄慧, 贾嵘, 董开松. 基于时空相关性的NAR动态神经网络风功率超短期组合预测[J]. 太阳能学报, 2020, 41(10): 311-316.
HUANG H, JIA R, DONG K S.Ultra short term combined prediction of wind power based on NAR dynamic neural network with spatiotemporal correlation[J]. Acta energiae solaris sinica, 2020, 41(10): 311-316.
[13] 王佶宣, 邓斌, 王江. 基于经验模态分解与RBF神经网络的短期风功率预测[J]. 电力系统及其自动化学报, 2020, 32(11): 109-115.
WANG J X, DENG B, WANG J.Short term wind power prediction based on empirical mode decomposition and RBF neural network[J]. Journal of power system and automation, 2020, 32(11): 109-115.
[14] 师洪涛, 杨静玲, 丁茂生, 等. 基于小波-BP神经网络的短期风电功率预测方法[J]. 电力系统自动化, 2011, 35(16): 44-48.
SHI H T, YANG J L, DING M S, et al.A short-term wind power prediction method based on wavelet decomposition and BP neural network[J]. Automation of electric power systems, 2011, 35(16): 44-48.
[15] 穆利智, 李泽文, 吕佳佳, 等. 结合EMD-WVD和布谷鸟搜索算法的输电线路故障暂态保护[J]. 电力系统自动化, 2020, 44(16): 137-144.
MU L Z, LI Z W, LYU J J, et al.Transient protection for transmission line fault combining empirical mode decomposition-wigner ville distribution and cuckoo search algorithm[J]. Automation of electric power systems, 2020, 44(16): 137-144.
[16] GU B, ZHANG T R, MENG H, et al.Short-term forecasting and uncertainty analysis of wind power based on long short-term memory, cloud model and non-parametric kernel density estimation[J]. Renewable energy, 2021, 164: 687-708.
[17] ZHANG Y G, PAN G F.A hybrid prediction model forecasting wind energy resources[J]. Environmental science and pollution research, 2020, 27(2): 19428-19446.
[18] 胡威, 张新燕, 郭永辉, 等. 基于游程检测法重构CEEMD的短时风功率预测[J]. 太阳能学报, 2020, 41(11): 317-325.
HU W, ZHANG X Y, GUO Y H, et al.Short term wind power prediction based on ceemd reconstruction based on run length detection method[J]. Acta energiae solaris sinica, 2020, 41(11): 317-325.
[19] KOVALEV M S, UTKIN L V.A robust algorithm for explaining unreliable machine learning survival models using the Kolmogorov-Smirnov bounds[J]. Neural networks, 2020, 132: 1-18.
[20] 杨楠, 周峥, 陈道君, 等. 基于非参数核密度估计的风功率波动性概率密度建模方法[J]. 太阳能学报, 2019, 40(7): 2028-2035.
YANG N, ZHOU Z, CHEN D J, et al.Probabilistic density modeling method for wind power volatility based on nonparametric kernel density estimation[J]. Acta energiae solaris sinica, 2019, 40(7): 2028-2035.

基金

国家自然科学基金重点项目(51637005); 河北省自然科学基金(G2020502001)

PDF(1738 KB)

Accesses

Citation

Detail

段落导航
相关文章

/