[1] NAIK J, DASH P K, DHAR S.A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based multi-kernel robust ridge regression[J]. Renewable energy, 2019: 136: 701-731. [2] 王贺, 胡志坚, 陈珍, 等. 基于集合经验模态分解和小波神经网络的短期风功率组合预测[J]. 电工技术学报, 2013, 28(9): 137-144. WANG H, HU Z J, CHEN Z, et al.Short term wind power combination prediction based on ensemble empirical mode decomposition and wavelet neural network[J]. Journal of electrical technology, 2013, 28(9): 137-144. [3] GU J, WANG Y N, XIE D, et al.Wind farm NWP data preprocessing method based on t-SNE[J]. Energies, 2019, 12(19): 3622. [4] 牛东晓, 纪会争. 风电功率物理预测模型引入误差量化分析方法[J]. 电力系统自动化, 2020, 44(8): 57-65. NIU D X, JI H Z.Quantitative analysis method for errors introduced by physical prediction model of wind power[J]. Automation of electric power systems, 2020, 44(8): 57-65. [5] MOHAMMED E, YU J L, WANG S Y, et al.Assessment of wind power prediction using hybrid method and comparison with different models[J]. Journal of electrical engineering & technology, 2018, 13(3): 1089-1098. [6] 杨锡运, 马雪, 张洋, 等. 基于EMD与加权马尔可夫链QR法的风电功率区间预测[J]. 太阳能学报, 2020, 41(2): 66-72. YANG X Y, MA X, ZHANG Y, et al.Wind power interval prediction based on EMD and weighted Markov chain QR method[J]. Acta energiae solaris sinica, 2020, 41(2): 66-72. [7] DO D-P N,LEE Y C, CHOI J. Hourly average wind speed simulation and forecast based on ARMA model in Jeju Island, Korea[J]. Journal of electrical engineering & technology, 2016, 11(6): 1548-1555. [8] 叶林, 滕景竹, 蓝海波, 等. 变尺度时间窗口和波动特征提取的短期风电功率组合预测[J]. 电力系统自动化, 2017, 41(17): 29-36, 59. YE L, TENG J Z, LAN H B, et al.Short term wind power combination forecasting based on variable scale time window and fluctuation feature extraction[J]. Power system automation, 2017, 41(17): 29-36, 59. [9] XU W F, LIU P, CHENG L, et al.Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy[J]. Renewable energy, 2021, 163: 772-782. [10] LO C S, TANG G, XUE X M, et al.The short-term interval prediction of wind power using the deep learning model with gradient descend optimization[J]. Renewable energy, 2020, 155: 197-211. [11] 王伟胜, 王铮, 董存, 等. 中国短期风电功率预测技术现状与误差分析[J]. 电力系统自动化, 2021, 45(1): 17-29. WANG W S, WANG Z, DONG C, et al.Current situation and error analysis of short-term wind power forecasting technology in China[J]. Power system automation, 2021, 45(1): 17-29. [12] 黄慧, 贾嵘, 董开松. 基于时空相关性的NAR动态神经网络风功率超短期组合预测[J]. 太阳能学报, 2020, 41(10): 311-316. HUANG H, JIA R, DONG K S.Ultra short term combined prediction of wind power based on NAR dynamic neural network with spatiotemporal correlation[J]. Acta energiae solaris sinica, 2020, 41(10): 311-316. [13] 王佶宣, 邓斌, 王江. 基于经验模态分解与RBF神经网络的短期风功率预测[J]. 电力系统及其自动化学报, 2020, 32(11): 109-115. WANG J X, DENG B, WANG J.Short term wind power prediction based on empirical mode decomposition and RBF neural network[J]. Journal of power system and automation, 2020, 32(11): 109-115. [14] 师洪涛, 杨静玲, 丁茂生, 等. 基于小波-BP神经网络的短期风电功率预测方法[J]. 电力系统自动化, 2011, 35(16): 44-48. SHI H T, YANG J L, DING M S, et al.A short-term wind power prediction method based on wavelet decomposition and BP neural network[J]. Automation of electric power systems, 2011, 35(16): 44-48. [15] 穆利智, 李泽文, 吕佳佳, 等. 结合EMD-WVD和布谷鸟搜索算法的输电线路故障暂态保护[J]. 电力系统自动化, 2020, 44(16): 137-144. MU L Z, LI Z W, LYU J J, et al.Transient protection for transmission line fault combining empirical mode decomposition-wigner ville distribution and cuckoo search algorithm[J]. Automation of electric power systems, 2020, 44(16): 137-144. [16] GU B, ZHANG T R, MENG H, et al.Short-term forecasting and uncertainty analysis of wind power based on long short-term memory, cloud model and non-parametric kernel density estimation[J]. Renewable energy, 2021, 164: 687-708. [17] ZHANG Y G, PAN G F.A hybrid prediction model forecasting wind energy resources[J]. Environmental science and pollution research, 2020, 27(2): 19428-19446. [18] 胡威, 张新燕, 郭永辉, 等. 基于游程检测法重构CEEMD的短时风功率预测[J]. 太阳能学报, 2020, 41(11): 317-325. HU W, ZHANG X Y, GUO Y H, et al.Short term wind power prediction based on ceemd reconstruction based on run length detection method[J]. Acta energiae solaris sinica, 2020, 41(11): 317-325. [19] KOVALEV M S, UTKIN L V.A robust algorithm for explaining unreliable machine learning survival models using the Kolmogorov-Smirnov bounds[J]. Neural networks, 2020, 132: 1-18. [20] 杨楠, 周峥, 陈道君, 等. 基于非参数核密度估计的风功率波动性概率密度建模方法[J]. 太阳能学报, 2019, 40(7): 2028-2035. YANG N, ZHOU Z, CHEN D J, et al.Probabilistic density modeling method for wind power volatility based on nonparametric kernel density estimation[J]. Acta energiae solaris sinica, 2019, 40(7): 2028-2035. |