大型风力机齿轮传动系统机电耦合动态特性研究

魏静, 郭剑鹏, 张世界, 徐子扬, 闫俊慧, 吉科峰

太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 300-308.

PDF(3049 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3049 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 300-308. DOI: 10.19912/j.0254-0096.tynxb.2020-1339

大型风力机齿轮传动系统机电耦合动态特性研究

  • 魏静1, 郭剑鹏1, 张世界1, 徐子扬1, 闫俊慧2, 吉科峰2
作者信息 +

STUDY ON ELECTROMECHANICAL COUPLING DYNAMIC CHARACTERISTICS OF LARGE WIND TURBINE GEAR TRANSMISSION SYSTEM

  • Wei Jing1, Guo Jianpeng1, Zhang Shijie1, Xu Ziyang1, Yan Junhui2, Ji Kefeng2
Author information +
文章历史 +

摘要

针对目前风力机柔性齿轮箱动力学研究时简化电气系统的问题,以某8 MW永磁同步风力机为对象,建立包含详细电气系统和柔性传动链的风力机模型。基于该模型探究电气系统效应对风力机齿轮箱啮合刚度、动态接触应力、振动加速度等动力学特性影响。结果表明:电气系统效应使系统转速、时变啮合刚度、接触应力相位滞后且波动减小;电气系统效应抑制各级齿轮角加速度及箱体振动加速度高频成分并减小传动链振动;风速突变时,电气系统效应可减小高速级齿轮峰值啮合力,增强风力机传动链抵御冲击能力。

Abstract

Aiming at the problem of simplifying the electrical system in the dynamic research of flexible gearbox of wind turbine, a wind turbine model with detailed electrical system and flexible transmission chain is established by taking an 8 MW permanent magnet synchronous wind turbine as the research object. Based on the model, the influence of electrical system on the dynamic characteristics of wind turbine gearbox, such as mesh stiffness, dynamic contact stress and vibration acceleration is explored. The results show that, the transmission chain will be affected by the electromagnetic damping of the generator which will slow down the response speed, but the meshing stiffness and contact stress fluctuation of each gear will be reduced. The high frequency component of angular acceleration and x-direction vibration acceleration of the gearbox are suppressed, so the vibration amplitude of the transmission chain is declined. When the wind speed change suddenly, the peak meshing force of high-speed gear decreases with the electrical system, which improves the wind turbines' ability of remaining stable.

关键词

风力机 / 齿轮 / 柔性结构 / 机电耦合 / 动力学响应

Key words

wind turbines / gears / flexible structure / electromechanical coupling / dynamic response

引用本文

导出引用
魏静, 郭剑鹏, 张世界, 徐子扬, 闫俊慧, 吉科峰. 大型风力机齿轮传动系统机电耦合动态特性研究[J]. 太阳能学报. 2022, 43(8): 300-308 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1339
Wei Jing, Guo Jianpeng, Zhang Shijie, Xu Ziyang, Yan Junhui, Ji Kefeng. STUDY ON ELECTROMECHANICAL COUPLING DYNAMIC CHARACTERISTICS OF LARGE WIND TURBINE GEAR TRANSMISSION SYSTEM[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 300-308 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1339
中图分类号: TM315   

参考文献

[1] ALVAREZ E J, RIBARIC A P.An improved-accuracy method for fatigue load analysis of wind turbine gearbox based on SCADA[J]. Renewable energy, 2017, 115: 391-399.
[2] 谭建军, 朱才朝, 宋朝省, 等. 风电机组传动链刚柔耦合动态特性分析[J]. 太阳能学报, 2020, 41(7): 341-351.
TAN J J, ZHU C C, SONG C X, et al.Dynamic characteristics analysis of wind turbine drivetrain with rigid-flexible coupling[J]. Acta energiae solaris sinica, 2020, 41(7): 341-351.
[3] LI Z W, WEN B R, WEI K X, et al.Flexible dynamic modelling and analysis of drive train for offshore floating wind turbine[J]. Renewable energy, 2020, 145: 1292-1305.
[4] 杜静, 秦月, 李成武. 风力发电机组传动链动力学建模与仿真分析[J]. 太阳能学报, 2014, 35(10): 1950-1957.
DU J, QIN Y, LI C W.Dynamics modeling and simulation analysis of wind turbine drive train[J]. Acta energiae solaris sinica, 2014, 35(10): 1950-1957.
[5] 金鑫, 钟翔, 谢双义, 等. 大型风力发电机转矩 LQR 控制及载荷优化[J]. 电力系统保护与控制, 2013, 41(6): 93-98.
JIN X, ZHONG X, XIE S Y, et al.Load reduction for large-scale wind turbine based on LQR torque control[J]. Power system protection and control, 2013, 41(6): 93-98.
[6] 杨文韬, 耿华, 肖帅, 等. 最大功率跟踪控制下大型风电机组的轴系扭振分析及抑制[J]. 清华大学学报(自然科学版), 2015, 55(11): 1171-1177.
YANG W T, GENG H, XIAO S, et al.Analysis and suppression for shaft torsional vibrations in large wind turbines with MPPT control[J]. Journal of Tsinghua University(science and technology), 2015, 55(11): 1171-1177.
[7] 苗风麟. 双馈风电机组机电耦合影响及载荷主动控制研究[D]. 北京: 北京交通大学, 2017.
MAIO F L.Electromechanical coupling effect in DFIG-wind turbine and active control for load reduction[D]. Beijing: Beijing Jiaotong University, 2017.
[8] 林莹莹. 直驱永磁风力发电机无位置传感器直接转矩控制的研究[D]. 福州: 福州大学, 2014.
LIN Y Y.Study on sensorless direct torque control for Direct-driven permanent magnet synchronous wind power generator [D]. Fuzhou: Fuzhou University, 2014.
[9] 佘峰. 永磁直驱式风力发电系统中最大功率控制的仿真研究[D]. 长沙: 湖南大学, 2009.
SHE F.Simulation of maximum power control for Direct-drive wind power system with PMSG[D]. Changsha: Hunan University, 2009.
[10] 陈伯时, 陈敏逊. 交流调速系统[M]. 北京: 北京机械工业出版社, 2005: 78-198.
CHEN B S, CHEN M X.AC drive system[M]. Beijing: China Machine Press, 2005: 78-198.
[11] 邓仁燕, 唐娟, 夏炎, 等. 基于前馈补偿的永磁同步电机电流环解耦控制[J]. 电力电子技术, 2013, 47(6): 68-70.
DENG R Y, TANG J, XIA Y, et al.Decoupling control of current loops for permanent magnet synchronous motor based on feedforward compensation[J]. Power electronics, 2013, 47(6): 68-70.
[12] SIMEON B.On Lagrange multipliers in flexible multibody dynamics[J]. Computer methods in applied mechanics and engineering, 2006, 195(50-51): 6993-7005.
[13] 王开宇. 基于多点约束的多尺度建模方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
WANG K Y.Research of multi-scale modeling mehod based on multi-point constraints[D]. Harbin: Harbin Institute of Technology, 2016.
[14] 屈梁生, 何正嘉. 机械故障诊断学[M]. 上海: 上海科学技术出版社, 1986.
QU L S, HE Z J.Introduction to machine fault diagnosis[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1986.

基金

国家重点研发计划(2018YFB2001602); 中央高校基本科研业务费科研平台与成果培育专项(2020CDCGJX030); 重庆市自然科学基金创新研究群体科学基金(cstc2019jcyj-cxttX0003)

PDF(3049 KB)

Accesses

Citation

Detail

段落导航
相关文章

/