设计一种新型密封式波浪能俘获装置,浮体随波浪进行摆动,驱动浮体内摆体旋转,将波浪能转换成机械能;通过选取4种摆体的形状进行对比,选出最佳的摆体形状,并建构摆体的数学模型;利用Matlab软件对摆体在不同波浪条件下进行数值求解,之后在水动力测试平台进行模型试验。结果表明:球体是最佳的摆体形状,其装置俘获效率较高,且结构简单、成本较低,可为下一步定量优化装置提供有效的理论依据。
Abstract
A new sealed wave energy conversion device is designed in this paper. The floating body oscillates with the waves, drives the floating body to rotate, and converts wave energy into mechanical energy. By comparing the four shapes of the pendulum body, the best shape of the pendulum body is selected and the mathematical model of the pendulum body is constructed. Matlab software was used to solve the pendulum body numerically under different wave conditions. Then a model test was conducted on the hydrodynamic test platform. The results show that the optimal shape of the swing body is sphere, the device has high capture efficiency, simple structure and low cost, which provides an effective theoretical basis for the next quantitative optimization device.
关键词
波浪能转换 /
能量吸收率 /
模型结构 /
摆体 /
形状
Key words
wave energy /
conversion efficiency /
model structures /
pendulum mass /
shape
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张亚群, 盛松伟, 游亚戈, 等. 波浪能发电技术应用发展现状及方向[J]. 新能源进展, 2019, 7(4): 374-378.
ZHANG Y Q, SHENG S W, YOU Y G, et al.Development status and application direction of wave energy generation technology[J]. Advances in new and renewable enengy, 2019, 7(4): 374-378.
[2] 盛松伟, 张亚群, 王坤林, 等. 波浪能发电装置能量转换系统多级负载试验[J]. 可再生能源, 2017, 35(2): 311-316.
SHENG S W, ZHANG Y Q, WANG K L, et al.Experiment for multi-level load of a power take off system of wave energy converters[J]. Renewable energy resources, 2017, 35(2): 311-316.
[3] 李雪临, 王项南, 王兵振, 等. 浮力摆式波浪能发电装置水动力性能优化研究[J]. 太阳能学报, 2016, 37(5): 1340-1345.
LI X L, WANG X N, WANG B Z, et al.Study on hydrodynamic performance optimization of inverted pendulum wave energy converter[J]. Acta energiae solaris sinica, 2016, 37(5): 1340-1345.
[4] 史宏达, 李向南, 赵晨羽, 等. 偏心摆式波能发电装置的设计与水动力性能研究[J]. 太阳能学报, 2020, 41(4): 296-301.
SHI H D, LI X N, ZHAO C Y, et al.Hydrodynamic study on eccentric pendulum wave energy converter[J]. Acta energiae solaris sinica, 2020, 41(4): 296-301.
[5] DREW B, PLUMMER A R, SAHINKAYA M N.A review of wave energy converter technology[J]. Power and energy, 2009, 223(8): 887-902.
[6] 游亚戈. 我国海洋能产业状况[J]. 高科技与产业化, 2008(7): 38-41.
YOU Y G.State of marine energy industry in China[J]. High technology and industrialization, 2008(7): 38-41.
[7] 吴庆春, 钱仰德. 用空气阻力系数测定仪研究运动物体所受空气阻力的成因与定量分析[J]. 大学物理, 2017, 36(5): 27-32.
WU Q C, QIAN Y D.The cause and quantitative analysis of air resistance of moving objects by air resistance coefficient meter[J]. College physics, 2017, 36(5): 27-32.
[8] 韩志凌, 田辉, 王文成, 等. 塑料冲击试验机摆锤形状对空气阻力的影响[J]. 现代塑料加工应用, 2016, 28(4): 45-48.
HAN Z L, TIAN H, WANG W C, et al.Effect of pendulum shape of plastic impact-testing machine on air resistance[J]. Modern plastics processing and application, 2016, 28(4): 45-48.
[9] 王芳. 海洋能发电装置均化成本研究[J]. 海洋开发与管理, 2016, 33(4): 63-67.
WANG F.On the levelized cost of energy in the development of ocean energy devices[J]. Marine development and management, 2016, 33(4): 63-67.
[10] 王传崑, 卢苇. 海洋能资源分析方法及储量评估[M]. 北京: 海洋出版社, 2009: 60-62.
WANG C K, LU W.Analysis method and reserve assessment of marine energy resources[M]. Beijing: Ocean Press, 2009: 60-62.
基金
国家重点研发计划子课题(2018YFB1501903-03)