基于形体要素的建筑太阳能采暖效率计算方法

刘大龙, 薛文静, 杨竞立

太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 204-208.

PDF(1734 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1734 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 204-208. DOI: 10.19912/j.0254-0096.tynxb.2020-1355

基于形体要素的建筑太阳能采暖效率计算方法

  • 刘大龙1, 薛文静1, 杨竞立2
作者信息 +

CALCULATION METHOD OF BUILDING SOLAR HEATING EFFICIENCY BASED ON SHAPE ELEMENTS

  • Liu Dalong1, Xue Wenjing1, Yang Jingli2
Author information +
文章历史 +

摘要

为构建简便有效的基于建筑形体要素的太阳能采暖潜力评价方法,以额济纳旗、西安为例,开展西部太阳能采暖效率计算方法研究。将建筑高宽比、高长比、南向窗墙面积比作为太阳能采暖热利用关联紧密的形体要素,经过正交试验、动态能耗模拟、数理统计分析等方法得到基于建筑形体要素的建筑太阳能采暖潜力函数。将该函数图形化表达发现增大建筑高宽比、南向窗墙面积比均能优化建筑太阳能采暖效率。给出在额济纳旗和西安提升建筑太阳能采暖效率的有效措施。该研究并非旨在取代动态模拟工具,而是为建筑设计初期构建一种简便的太阳能采暖设计的热性能分析方法。

Abstract

In order to establish a simple and effective solar heating potential evaluation method based on building shape elements, taking Ejina Banner and Xi'an as examples, a study on the potential of solar heating in western China was carried out. The height-to-width ratio, height-length ratio, and south-facing window-to-wall ratio of the building are regarded as the key physical elements closely related to the heat utilization of solar heating. After orthogonal experiments, dynamic energy consumption simulation, and mathematical statistical analysis, building solar heating potential function based on building shape elements is obtained. By graphical expression of the function, it is found that increasing the aspect ratio and the south-facing window-to-wall ratio are conducive to improving building solar heating efficiency. Effective measures to improve the solar heating efficiency of buildings in Ejina Banner and Xi'an are given. This research is not intended to replace dynamic simulation tools, but to construct a simple thermal performance analysis method for solar heating design at the initial stage of building design.

关键词

太阳能采暖 / 建筑节能 / 潜力分析 / 概念设计 / 建筑形体

Key words

solar heating / building energy efficiency / potentiality analysis / conceptual design / building shape

引用本文

导出引用
刘大龙, 薛文静, 杨竞立. 基于形体要素的建筑太阳能采暖效率计算方法[J]. 太阳能学报. 2022, 43(8): 204-208 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1355
Liu Dalong, Xue Wenjing, Yang Jingli. CALCULATION METHOD OF BUILDING SOLAR HEATING EFFICIENCY BASED ON SHAPE ELEMENTS[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 204-208 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1355
中图分类号: TU111.19+5.9   

参考文献

[1] 王炳忠. 中国太阳能资源利用区划[J]. 太阳能学报, 1983, 4(3): 221-228.
WANG B Z.China solar energy resource zone division[J]. Acta energiae solaris sinica, 1983, 4(3): 221-228.
[2] ZHANG Y, REN J, PU Y, et al.Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis[J]. Renewable energy, 2020, 149: 577-586.
[3] 赵群, 李桂文. 被动太阳能建筑太阳能贡献率的影响因子[J]. 低温建筑技术, 2008(1): 113-115.
ZHAO Q, LI G W.Influence factor of solar energy contribution rate in passive solar buildings[J]. Low temperature architecture technology, 2008(1): 113-115.
[4] DUFFIE J A, BECKMAN W A.Solar engineering of thermal processes[M]. New York: John Wiley & Sons, 2013.
[5] NAULT E, MOONEN P, REY E, et al.Predictive models for assessing the passive solar and daylight potential of neighborhood designs: A comparative proof-of-concept study[J]. Building and environment, 2017, 116: 1-16.
[6] 中华人民共和国住房和城乡建设部. 被动式太阳能建筑技术规范JGJ/T 267—2012[M]. 北京: 中国建筑工业出版社, 2012.
Ministry of Housing and Urban-Rural Development, PRC. Technical specification for passive solar buildings JGJ/T 267—2012[M]. Beijing: China Building Industry Press, 2012.
[7] KESIK T, O'BRIEN W, DANIELS J H. Feasible upper boundaries of passive solar space heating fraction potentials by climate zone[C]//Proceedings of the eSim2014 Building Performance Simulation Conference, Ottawa, Canada, 2014.
[8] ZIRNHELT H E, RICHMAN R C.The potential energy savings from residential passive solar design in Canada[J]. Energy and buildings, 2015, 103: 224-237.
[9] PREMROV M, LESKOVAR V Ž, MIHALIČ K.Influence of the building shape on the energy performance of timber-glass buildings in different climatic conditions[J]. Energy, 2016, 108: 201-211.
[10] 简毅文. 建筑形式对太阳能热利用的影响研究[J]. 太阳能学报, 2007, 28(1): 108-112.
JIAN Y W.Study on effects of building form on solar thermal application[J]. Acta energiae solaris sinica, 2007, 28(1): 108-112.
[11] 杨竞立. 基于建筑形体要素的西部太阳能采暖潜力研究[D]. 西安: 西安建筑科技大学, 2019.
YANG J L.Research on the western solar heating potential based on building shape elements[D]. Xi'an: Xi'an University of Architecture and Technology, 2019.
[12] ANSI/ASHRAE 55-2013, Thermal environmental conditions for human occupancy[S].
[13] 谢琳娜. 被动式太阳能建筑设计气候分区研究[D]. 西安: 西安建筑科技大学, 2006.
XIE L N.Study on climate zoning of passive solar building design[D]. Xi'an: Xi'an University of Architecture and Technology, 2006.
[14] 李元哲. 被动式太阳能房热工设计手册[M]. 北京: 清华大学出版社, 1993.
LI Y Z.Thermal design manual of passive solar house[M]. Beijing: Tsinghua University Press, 1993.
[15] 刘大龙, 杨竞立, 贾晓伟, 等. 西部地区居住建筑太阳能采暖利用辐射分区[J]. 太阳能学报, 2019, 40(5): 1316-1323.
LIU D L, YANG J L, JIA X W, et al.Distribution of solar radiant heating usage about residential buildings in western China[J]. Acta energiae solaris sinica, 2019, 40(5): 1316-1323.
[16] 中国建筑标准设计研究院. 外墙外保温建筑构10J121[M]. 北京: 中国计划出版社, 2010.
China Building Standards Design and Research Institute. External wall insulation building construction 10J121[M]. Beijing: China Planning Press, 2010.
[17] 张海滨. 寒冷地区居住建筑体型设计参数与建筑节能的定量关系研究[D]. 天津: 天津大学, 2012.
ZHANG H B.Study on the quantitative relationship between the design parameters of residential buildings in cold areas and building energy conservation[D]. Tianjin: Tianjin University, 2012.

基金

国家自然科学基金(51878536); 陕西省重点研发项目(2021SF-466, 2021ZDLSF05-11)

PDF(1734 KB)

Accesses

Citation

Detail

段落导航
相关文章

/