基于不同俯仰运动轨迹俯仰角的有效值和平均值相同的原则,运用数值计算的方法研究俯仰运动轨迹和阻尼比变化对半主动扑翼捕能特性的影响。结果表明俯仰运动轨迹对半主动扑翼捕能性能的影响与系统阻尼比相关,当阻尼比分别为2和4时,采用正弦俯仰轨迹的半主动扑翼在捕能功率和捕能效率方面均优于采用其他轨迹的扑翼,对比梯形轨迹扑翼,阻尼比为2的正弦俯仰轨迹扑翼效率增加7.96%。而当阻尼比为1时,采用三角俯仰运动轨迹扑翼具有最大的捕能效率。通过对不同半主动扑翼的流场分析发现,运动轨迹和阻尼比可改变扑翼前缘涡的涡流强度和涡流脱落形成时间,从而影响扑翼的捕能性能。
Abstract
Based on the principle that the effective values and the mean values of pitching angles are equal, the influences of the different pitching trajectories on the aerodynamic performance of semi-active flapping airfoil are studied by the numerical analysis. The result show that the change of pitching trajectory influences the performance of the semi-active flapping airfoil, which is related to the damping ratio. When the damping ratio is 2.0 or 4.0, the semi-active flapping airfoil with the sinusoidal pitching motion is higher than the semi-flapping airfoil with other pitching motions in the extraction power and extraction efficiency. When the damping ratio is 2.0, the semi-flapping airfoil with the sinusoidal pitching motion increases 3.38% and 7.89% in the power coefficient and the efficiency respectively. However, when the damping ratio is 1.0, the semi-active flapping airfoil with triangle pitching motion is the largest efficiency. The motion trajectory and damping ratio can change the size and the evolution velocity of the leading edge vortex of the semi-active flapping airfoil by the analysis of the flow fields from the different semi-active flapping airfoils.
关键词
轨迹 /
捕能 /
涡流 /
阻尼比 /
半主动扑翼
Key words
motion planning /
energy harvesting /
vortex flow /
damping ratio /
semi-active flapping airfoil
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WU T Y T. Extraction of flow energy by a wing oscillating in waves[J]. Journal of ship research, 1972, 14(1): 66-78.
[2] BRYDEN I G, GRINSTED T, MELVILLE G T.Assessing the potential of a simple tidal channel to deliver useful energy[J]. Applied ocean research, 2004, 26(5): 198-204.
[3] GLYNN J.Design of biomimetic passive control for optimisation of oscillating hydrofoils in tidal energy capture[D]. Strathclyde: University of Strathclyde, 2006.
[4] PAISH M, GILES J, PANAHANDEH B.The pulse stream concept, and the development of the pulse stream commercial demonstrator[C]//Proceedings of the 3rd International Conference on Ocean Energy, Bilbao, Spain, 2010.
[5] PLATZER M F, SARIGUL-KLIJIN N, YOUNG J, et al.Renewable hydrogen production using sailing ships[C]//ASME International Mechanical Engineering Congress and Exposition (IMECE), Denver, Colorado, USA, 2011: 1119-1125.
[6] KINSEY T, DUMAS G.Parametric study of an oscillating airfoil in a power-extraction regime[J]. AIAA journal, 2008, 46(6): 1318-1330.
[7] XIAO Q, ZHU Q.A review on flow energy harvesters based on flapping foils[J]. Journal of fluids and structures, 2014, 46: 174-191.
[8] XIAQ Q, LIAO W, YANG S C, et al.How motion trajectory affects energy extraction performance of a biomimic energy generator with an oscillating foil?[J]. Renewable energy, 2012, 37(1): 61-75.
[9] TENG L B, DENG J, PAN D Y, et al.Effects of non-sinusoidal pitching motion on energy extraction performance of a semi-active flapping foil[J]. Renewable energy, 2016, 85: 810-818.
[10] XIE Y H, LU K, ZHANG D.Investigation on energy extraction performance of an oscillating foil with modified flapping motion[J]. Renewable energy, 2014, 63:550-557.
[11] LU K, XIE Y H, ZHANG D.Nonsinusoidal motion effects on energy extraction performance of a flapping foil[J]. Renewable energy, 2014, 64: 283-293.
[12] ZHU J Y, TIAN T X.The time asymmetric pitching effects on the energy extraction performance of a semi-active flapping wing power generator[J]. European journal of mechanics-B/f luids, 2017, 66: 92-101.
[13] 朱建阳, 张加诚, 王钊. 仿生翼型对半主动扑翼捕能性能的影响[J]. 工程力学, 2019, 36(10): 223-228, 237.
ZHU J Y, ZHANG J C, WANG Z.The influent of bionic airfoil on aerodynamic performance of semi-active flapping wing generators[J]. Engineering mechanics, 2019, 36(10): 223-228, 237.
[14] ZHU J Y, ZHANG J C.Power extraction performance of two semi-active flapping airfoils at biplane configuration[J]. Journal of mechanical science and technology, 2020, 34(1): 175-187.
基金
国家自然科学基金(51975429; 51705380); 武汉市应用基础前沿项目(2019010701011404)