模块化多电平变流器(MMC)用于高压直流输电(HVDC)系统中时,通常采用PI控制方法,但这种策略存在参数选取繁杂、动态性能较差的缺点。为了提高高压直流输电(HVDC)系统的动态性能、简化参数选取,提出背靠背(B2B)型模块化多电平变流器-高压直流输电(MMC-HVDC)系统的Lyapunov控制策略。首先,建立B2B型MMC-HVDC数学模型;然后,设计Lyapunov函数控制策略;其次,在控制部分加入环流抑制、移相载波调制等,以完整地实现系统功能;最后,在Matlab/Simulink平台上验证了Lyapunov控制策略具有参数选择容易、动态性能优良的特点。
Abstract
When modular multilevel converter (MMC) is used in high voltage direct current (HVDC) system, PI control method is usually adopted, but this strategy has the disadvantages of complex parameter selection and poor dynamic performance. In order to improve the dynamic performance of the system and simplify the selection of parameters, this paper proposes a Lyapunov control strategy for the back-to-back (B2B) MMC-HVDC system. Firstly, the mathematical model of B2B MMC-HVDC is established; Secondly, the Lyapunov function control strategy is designed. Next, the circulating current suppression and phase-shift carrier modulation are added in the control part to realize the system function completely. Finally, the Lyapunov control strategy is verified to have the characteristics of easy parameter selection and excellent dynamic performance on Matlab/Simulink platform.
关键词
无源网络 /
模块化多电平换流器 /
高压直流输电 /
Lyapunov控制 /
可再生能源
Key words
passive network /
modular multilevel converter /
high voltage DC transmission /
Lyapunov control /
renewable energy
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 韩平平, 陈凌琦, 丁明, 等. 一种适用于风电外送的混合高压直流输电系统[J]. 太阳能学报, 2019, 40(8): 2162-2169.
HAN P P, CHEN L Q, DING M, et al.A kind of hybrid hvdc transmission system suitable for wind power connection[J]. Acta energiae solaris sinica, 2019, 40(8): 2162-2169.
[2] 刘泽洪, 郭贤珊. 含新能源接入的双极柔性直流电网运行特性研究与工程实践[J]. 电网技术, 2020, 44(9): 3595-3603.
LIU Z H, GUO X S.Operating characteristics research and engineering application of voltage source converter based DC grid with renewable source connected[J]. Power system technology, 2020, 44(9): 3595-3603.
[3] 袁志昌, 郭佩乾, 刘国伟, 等. 新能源经柔性直流接入电网的控制与保护综述[J]. 高电压技术, 2020, 46(05): 1473-1488.
YUAN Z C, GUO P Q, LIU G W, et al.Review on control and protection for renewable energy integration through VSC-HVDC[J]. High voltage technology, 2020, 46(5): 1460-1475.
[4] 王姗姗, 周孝信, 汤广福, 等. 模块化多电平电压源换流器的数学模型[J]. 中国电机工程学报, 2011, 31(24): 1-8.
WANG S S, ZHOU X X, TANG G F, et al.Modeling of modular multi-level voltage source converter[J]. Proceeding of the CSEE, 2011, 31(24): 1-8.
[5] 管敏渊, 徐政. 模块化多电平换流器型直流输电的建模与控制[J]. 电力系统自动化, 2010, 34(19): 64-68.
GUAN M Y, XU Z.Modeling and control of modular multilevel converter in HVDC transmission[J]. Automation of electric power systems, 2010, 34(19): 64-68.
[6] 管敏渊, 徐政, 屠卿瑞, 等. 模块化多电平换流器型直流输电的调制策略[J]. 电力系统自动化, 2010, 34(2): 48-52.
GUAN M Y, XU Z, TU Q R, et al.Nearest level modulation for modular multilevel converters in HVDC transmission[J]. Automation of electric power systems, 2010, 34(2): 48-52.
[7] QIN J C, SAEEDIFARD M.Predictive control of a modular multilevel converter for a back-to-back HVDC system[J]. IEEE transactions on power delivery, 2012, 27(3): 1538-1547.
[8] 董鹏, 蔡旭, 吕敬. 不对称交流电网下MMC-HVDC系统的控制策略[J]. 中国电机工程学报, 2018, 38(16): 4646-4657, 4970.
DONG P, CAI X, LYU J.Control strategy of MMC-HVDC system under asymmetric AC grid conditions[J]. Proceeding of the CSEE, 2018, 38(16): 4646-4657, 4970.
[9] 孙黎, 胡峰, 穆钢. 基于改进控制策略的MMC-HVDC运行特性研究[J]. 电力系统保护与控制, 2018, 46(9): 10-16.
SUN L, HU F, MU G.Investigation of MMC-HVDC operation performance based on improved control strategy[J]. Power system protection and control, 2018, 46(9): 10-16.
[10] 程启明, 孙伟莎, 程尹曼, 等. 电网电压不平衡条件下MMC的基于Lyapunov函数非线性控制策略[J]. 高电压技术, 2019, 45(12): 3984-3992.
CHENG Q M, SUN W S, CHENG Y M, et al.Nonlinear control strategy based on Lyapunov function for MMC under grid voltage unbalance condition[J]. High voltage engineering, 2019, 45(12): 3984-3992.
[11] 薛花, 李杨, 王育飞, 等. MMC-HVDC无源性PI稳定控制与环流抑制方法[J]. 电力系统保护与控制, 2017, 45(19): 78-85.
XUE H, LI Y, WANG Y F, et al.Passivity-based PI stability control and circulating current suppression method of MMC-HVDC[J]. Power system protection and control, 2017, 45(19): 78-85.
[12] 张宇, 程启明, 程尹曼, 等. 电容中点式三相四线制SAPF混合无源非线性控制策略[J]. 电力系统自动化, 2017, 41(19): 110-119.
ZHANG Y, CHENG Q M, CHENG Y M, et al.Nonlinear control strategy of three-phase four-wire shunt active power filter with mid-point capacitor based on hybrid passive theory[J]. Automation of electric power systems, 2017, 41(19): 110-119.
[13] 薛花, 范月, 王育飞. 基于李雅普诺夫函数的并联型混合有源电力滤波器非线性控制方法[J]. 电工技术学报, 2016, 31(21): 133-141.
XUE H, FAN Y, WANG Y F.Nonlinear control strategy based on Lyapunov function for shunt hybrid active power filter[J]. Transactions of China Electrotechincal Society, 2016, 31(21): 133-141.
[14] 杨帆, 陈陈, 王西田, 等. 基于李雅普诺夫函数的直流附加控制器设计[J]. 电网技术, 2008, 32(18): 14-17.
YANG F, CHEN C, WANG X T, et al.Design of HVDC supplementary controller based on Lyapunov theory[J]. Power system technology, 2008, 32(18): 14-17.
基金
国家自然科学基金(61905139); 上海市电站自动化技术重点实验室项目(13Z2273800)