通过设计“量筒法”代替环刀法和选用热重法,分别测量地下水渗入换热孔内回填材料的饱和含水率和残余含水率,用滤纸法测量基质吸力与含水率数据,然后基于含水率计算出不同深度下回填材料热特性参数。结果表明,高吸力值时材料的含水率更低,假设饱水带最高点为地下水位线0点,在距地下水位线100 m处仅有3.6%含水率;对比软件模拟数据与实测点,发现所选用的设计方法与拟合结果相近;与干实回填材料相比,受地下水渗入的换热孔下段靠近水位线处蓄热能力更强,温度变化相对延迟,但导热能力和热扩散能力都有所减弱,中上段蓄热和导热能力减弱,但热扩散能力增强。
Abstract
In this paper, the water saturation and residual water content of the backfill material in the boreholes were measured by the thermogravimetric method. The "graduated cylinder approach" was adopted to replace the ring knife method in this study. The matrix suction and water content were measured by the filter paper method. Based on the moisture content, the thermal characteristic parameters of the backfill material at different depths were calculated. The results showed that the greater the matrix suction, the lower the water content. Assuming that the highest point of the saturated zone is the water table, there is only 3.6% of water saturation at a distance of 100 m from the water table. Comparing the simulation results with the measured points, it shows that the measured results from the design method used matches the fitting results; compared with dry backfill material, the lower section of the borehole infiltrated by groundwater has a higher heat storage capacity near the water table, and the temperature change is relatively delayed. However, the thermal conductivity and thermal diffusion capacity are both affected. The heat storage and heat conduction capacity of the upper middle section is weakened, but the heat diffusion capacity is strengthened.
关键词
地源热泵 /
热物性 /
传热多孔材料 /
含水率 /
回填材料
Key words
underground heat pumps /
thermophysical properties /
heat transfer-porous materials /
moisture content /
backfill material
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 汪集暘. 地热学及其应用[M]. 北京: 科学出版社, 2015: 1-115.
WANG J Y.Geothermal and its application[M]. Beijing: Science Press, 2015: 1-115.
[2] 宋小庆. 贵州主要城市浅层地热能利用潜力评价[J]. 中国岩溶, 2018, 37(1): 9-16.
SONG X Q.Evaluation on utilization potential of shallow geothermal energy in major cities of Guizhou[J]. Carsologica sinica, 2018, 37(1): 9-16.
[3] 马最良, 吕悦. 地源热泵系统设计与应用[M]. 北京: 机械工业出版社, 2014: 194-244.
MA Z L, LYU Y.Ground source heat pump system design and application[M]. Beijing: China Machine Press, 2014: 194-244.
[4] 徐伟. 地源热泵技术手册[M]. 北京: 中国建筑技术工业, 2011: 36-78.
XU W.Ground source heat pump technical manual[M]. Beijing: China Building Technology Industry Press, 2011: 36-78.
[5] 尚少文, 潘欣, 刘兵红. 地下水渗流对地埋管周围土壤温度影响的分析[C]//第十六届沈阳科学学术年会论文集(理工农医), 沈阳, 2019: 4.
SHANG S W, PAN X, LIU B H.Analysis of the influence of groundwater seepage on soil temperature around buried pipe[C]//Proceedings of the 16th Annual Shenyang Science Conference(Science, Agriculture, Medicine), Shenyang, 2019: 4.
[6] 刘逸, 陈培强. 地下水渗流对地埋管换热器换热的影响研究[J]. 制冷, 2019, 38(3): 10-16.
LIU Y, CHEN P Q.Research on the influence of groundwater seepage on the heat exchange of underground heat exchanger[J]. Refrigeration, 2019, 38(3): 10-16.
[7] 张琳琳. 地下水渗流作用下的地埋管换热器传热性能研究[D]. 西安: 西安建筑科技大学, 2013.
ZHANG L L.Research on heat transfer performance of buried pipe heat exchanger under groundwater seepage[D]. Xi’an: Xi’an University of Architecture and Technology, 2013.
[8] 吴尚杰. 闽南砂性填料土水特征曲线的滤纸法试验研究[J]. 路基工程, 2020(4): 3-7.
WU S J.Experimental study on soil-water characteristic curve of sandy soil filler in south Fujian by filter[J]. Subgrade engineering, 2020(4): 3-7.
[9] 潘登丽, 倪万魁, 苑康泽, 等. 洛川原状黄土的孔隙结构对土水特征曲线的影响[J]. 甘肃科学学报, 2020, 32(2): 110-116.
PAN D L, NI W K, YUAN K Z, et al.Effect of pore structure of original loess in luochuan on soil-water characteristic curve[J]. Journal of Gansu sciences, 2020, 32(2): 110-116.
[10] 刘艳, 于建涛. 动态土水特征曲线滞后模型研究[J]. 岩土工程学报, 2021, 43(1): 62-68.
LIU Y, YU J T.Hysteresis model of soil water characteristic curve under dynamic condition[J]. Chinese journal of geotechnical engineering, 2021, 43(1): 62-68.
[11] 王志超, 李仙岳, 史海滨, 等. 含残膜土壤水分特征曲线模型构建[J]. 农业工程学报, 2016, 32(14): 103-109.
WANG Z C, LI X Y, SHI H B.et al.Water characteristic curve model for soil with residual plastic film[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(14):103-109
[12] 汪东林. 重塑非饱和黏土的土-水特征曲线及其影响因素研究[J]. 岩土力学, 2009, 30(3): 751-756.
WANG D L.Experimental study of soil-water characteristic curve of remolded unsaturated clay. rock and soil mechanics[J]. Rock and soil mechanics, 2009, 30(3): 751-756.
[13] 吴珺华, 袁俊平, 杨松. 基于滤纸法的裂隙膨胀土土水特征曲线试验[J]. 水利水电科技进展, 2013, 33(5): 61-64.
WU J H, YUAN J P, YANG S.Experimental study on SWCC of expansive soil with cracks using filter paper method[J]. Advances in science and technology of water resources, 2015, 33(5): 61-64.
[14] 刘克振. 基于滤纸法测试非饱和土土水特征曲线[D]. 青岛: 山东科技大学, 2017.
LIU K Z.Soil water characteristic curve of unsaturated soil based on filter paper method[D]. Qingdao: Shandong University of Science and Technology, 2017.
[15] 贾宝新, 李志永, 陈扬, 等. 非饱和黏性粉土的土水特征曲线试验研究[J]. 辽宁工程技术大学学报(自然科学版), 2020, 39(5): 396-402.
JIA B X, LI Z Y, CHEN Y, et al.Experimental study on soil-water characteristic curve of unsaturated clayey soil[J]. Journal of Liaoning Technical University(natural science), 2020, 39(5): 396-402.
[16] 白福青, 刘斯宏, 袁骄. 滤纸法测定南阳中膨胀土土水特征曲线试验研究[J]. 岩土工程学报, 2011, 33(6): 928-933.
BAI F Q, LIU S H, YUAN J.Measurement of SWCC of Nanyang expansive soil using the filter paper method[J]. Chinese journal of geotechnical engineering, 2011, 33(6): 928-933.
[17] 雷志栋, 杨诗秀, 谢森传. 土壤水动力学[M]. 北京: 清华大学出版社, 1987: 63-79.
LEI Z D, YANG S X, XIE S C.Soil hydrodynamics[M]. Beijing: Tsinghua University Press, 1987: 63-79.
[18] GB/T 50123Y—2019, 土工试验标准[S].
GB/T 50123Y—2019, Geotechnical test standards[S].
[19] GENUCHTEN V T M. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil science society of America journal, 1980, 44(5): 892-898.
[20] SILLERS W S, FREDLUND D G.Statistical assessment of soil-water characteristic curve models for geotechnical engineering[J]. Canadian geotechnical journal, 2001, 38(6): 1297-1313.
[21] 李佳容. 快速加热条件下碳酸钙分解动力学[J]. 中国粉体技术, 2018, 24(6): 1-7.
LI J R.Decomposition kinetics of calcium carbonate under rapid heating[J]. China powder science and technology, 2018, 24(6): 1-7.
[22] 童富果. 降雨条件下坡面径流与饱和—非饱和渗流耦合计算模型研究[D]. 宜昌: 三峡大学, 2004.
TONG F G.Couple model study of slope runoff &unsaturated seepage under rainfall condition[D]. Yichang: Sanxia University, 2004.
[23] 马少坤, 唐晓菲, 李少龙, 等. 非饱和砾石土土水特征曲线研究[J]. 公路, 2020, 65(5): 34-42.
MA S K, TANG X F, LI S L, et al.Research on soil water characteristic curve of unsaturated gravel soil[J]. Highway, 2020, 65(5): 34-42.
[24] ALOWAISY A, YASUFUKU N, ISHIKURA R, et al.Continuous pressurization method for a rapid determination of the soil water characteristics curve for remolded and undisturbed cohesionless soils[J]. Soils and foundations, 2020, 60(3): 634-647.
[25] 王明章. 贵州省岩溶区地下水与地质环境[M]. 北京: 地质出版社, 2015: 131-152.
WANG M Z.Groundwater and geological environment in karst areas in Guizhou province[M]. Beijing: Geological Publishing House, 2015: 131-152.
[26] 冉敬, 郭创峰, 杜谷, 等. X射线衍射全谱拟合法分析蓝晶石的矿物含量[J]. 岩矿测试, 2019, 38(6): 660-667.
RAN J, GUO C F, DU G, et al.Quantitative analysis of mineral composition of kyanite by X-ray diffraction with rietveld refinemen[J]. Rock and mineral analysis, 2019, 38(6): 660-667.
基金
国家自然科学基金地区项目(52066005; 51864008); 贵州省科技支撑计划(黔科合支撑[2020]2Y025); 贵州省教育厅青年科技人才成长项目(黔教合KY字[2017]117)