基于DTW-VMD-PSO-BP的光伏发电功率短期预测方法

袁建华, 谢斌斌, 何宝林, 赵子玮, 刘宇, 刘邦

太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 58-66.

PDF(2436 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2436 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 58-66. DOI: 10.19912/j.0254-0096.tynxb.2020-1405

基于DTW-VMD-PSO-BP的光伏发电功率短期预测方法

  • 袁建华1, 谢斌斌1, 何宝林1, 赵子玮1, 刘宇1, 刘邦2
作者信息 +

SHORT TERM FORECASTING METHOD OF PHOTOVOLTAICOUTPUT BASED ON DTW-VMD-PSO-BP

  • Yuan Jianhua1, Xie Binbin1, He Baolin1, Zhao Ziwei1, Liu Yu1, Liu Bang2
Author information +
文章历史 +

摘要

针对光伏发电系统短期预测影响因素较多、预测精度较低、稳定度不高等问题,提出一种基于动态时间弯曲(DTW)和变分模态分解(VMD)的粒子群(PSO)优化的BP神经网络光伏发电预测方法。首先使用动态时间弯曲算法对光伏发电功率及影响因素的数据进行测算得到DTW值,再根据DTW值选择对光伏发电功率影响较大的辐射度作为主要影响因素,然后利用变分模态分解将影响因素及光伏发电功率进行分解,降低数据的波动性和非平稳性。运用粒子群优化的BP神经网络对各分量进行预测,然后将预测结果进行叠加,叠加所得结果即为最后预测结果。在Matlab中对该方法和其他神经网络进行算例验证和误差分析,结果表明采用该方法预测结果精度高,稳定性好。

Abstract

Aiming at the problems of many influencing factors, low prediction accuracy and low stability in short-term prediction of photovoltaic power generation system, a BP neural network photovoltaic power generation prediction method based on particle swarm optimization (PSO) optimization of dynamic time warping (DTW) and variational mode decomposition (VMD) is proposed. Firstly, the dynamic time warping algorithm is used to calculate the data of photovoltaic power generation and influencing factors, to obtain DTW value. Then, according to the DTW value, the radiance which has a greater impact on photovoltaic power generation is selected as the main influencing factor. Next, the variational mode decomposition is used to decompose the influencing factors and photovoltaic power to reduce the volatility and non stationarity of the data, and BP neural network optimized by the particle swarm is used to predict each component Finally, the prediction results are superimposed, to obtain the final prediction value This method is verified in MATLAB by comparison with other neural networks and error analysis. The results comparison show that this method has high accuracy and good stability.

关键词

光伏发电功率 / 粒子群算法 / 神经网络 / 短期预测 / 动态时间弯曲 / 变分模态分解

Key words

PV power / particle swarm optimization / neural networks / short-term forecast / dynamic time warping / variational mode decomposition

引用本文

导出引用
袁建华, 谢斌斌, 何宝林, 赵子玮, 刘宇, 刘邦. 基于DTW-VMD-PSO-BP的光伏发电功率短期预测方法[J]. 太阳能学报. 2022, 43(8): 58-66 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1405
Yuan Jianhua, Xie Binbin, He Baolin, Zhao Ziwei, Liu Yu, Liu Bang. SHORT TERM FORECASTING METHOD OF PHOTOVOLTAICOUTPUT BASED ON DTW-VMD-PSO-BP[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 58-66 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1405
中图分类号: TM615   

参考文献

[1] BAE K Y, JANG H S, SUNG D K.Hourly solar irradiance prediction based on support vector machine and its error analysis[J]. IEEE transaction on power systems, 2017, 32(2): 935-945.
[2] CECI M, CORRIZZO R, FUMAROLA F, et al, Predictive modeling of PV energy production: how to set up the learing task for a better prediction?[J]. IEEE transactions on industrial informatics, 2017, 13(3): 956-966.
[3] 王晗, 严正, 徐潇源, 等. 基于稀疏多项式混沌展开的孤岛微电网全局灵敏度分析[J]. 电力系统自动化, 2019, 43(10): 44-57.
WANG H, YAN Z, XU X Y, et al.Global sensitivity analysis for islanded microgrid based on sparse polynomial chaos expansion[J]. Automation of electric power systems, 2019, 43(10): 44-57.
[4] 杨丽薇, 高晓清, 蒋俊霞, 等. 基于小波变换与神经网络的光伏电站短期功率预测[J]. 太阳能学报, 2020, 41(7): 152-157.
YANG L W, GAO X Q, JIANG J X, et al.Short-term photovoltaic output power prediction based on wavelet and neural network[J]. Acta energiae solaris sinica, 2020, 41(7): 152-157.
[5] 李正明, 梁彩霞, 王满商. 基于PSO-DBN神经网络的光伏短期发电出力预测[J]. 电力系统保护与控制, 2020, 48(8): 149-154.
LI Z M, LIANG C X, WANG M S.Short-term generation output prediction based on a PSO-DBN netural network[J]. Power system protection and control, 2020, 48(8): 149-154.
[6] 王琦, 季顺祥, 钱子伟, 等. 基于熵理论和改进ELM的光伏发电功率预测[J]. 太阳能学报, 2020, 41(10): 151-158.
WANG Q, JI S X, QIANG Z W, et al.Photovoltaic power prediction based on entropy theory and improved ELM[J]. Acta energiae solaris sinica, 2020, 41(10): 151-158.
[7] 胡兵, 詹仲强, 陈洁, 等. 基于PCA-GA-Elman的短期光伏出力预测研究[J]. 太阳能学报, 2020, 41(6): 256-263.
HU B, ZHAN Z Q, CHEN J, et al.Prediction research on short-term photovoltaic output based on PCA-GA-ELman[J]. Acta energiae solaris sinica, 2020, 41(6): 256-263.
[8] 李雯, 魏斌, 韩肖清, 等. 基于DPK-means和ELM的日前光伏发电功率预测[J]. 现代电力, 2020, 37(4): 351-357.
LI W, WEI B, HAN X Q, et al.Day-ahead photo-voltaic power generation forecasting based on DPK-means and ELM[J]. Modern electric power, 2020, 37(4): 351-357.
[9] 张玉, 莫寒, 张烈平. 基于模糊支持向量机的光伏发电量预测[J]. 热力发电, 2017, 46(1): 116-120.
ZHANG Y, MO H, ZHANG L P.Photovoltaic power prediction based on fuzzy support vector machine[J]. Thermal power generation, 2017, 46(1): 116-120.
[10] ESEYE A T, ZHANG J H, ZHENG D H.Short-term photovoltaic solar power forecasting using a hybrid wavelet-PSO-SVM model based on SCADA and meteorological information[J]. Renewable energy, 2018, 118: 357-367.
[11] 张雨金, 杨凌帆, 葛双冶, 等. 基于Kmeans-SVM的短期光伏发电功率预测[J]. 电力系统保护与控制, 2018, 46(21): 118-124.
ZHANG Y J, YANG L F, GE S Y, et al.Short-term photovoltaic power forecasting based on Kmeans algorithm and support vector machine[J]. Power system protection and control, 2018, 46(21): 118-124.
[12] 丁明, 王磊, 毕锐. 基于改进BP神经网络的光伏发电系统输出功率短期预测模型[J]. 电力系统保护与控制, 2012, 40(11): 93-100.
DING M, WANG L, BI R.A short-term prediction model to forecast output power of photovoltaic system based on improved BP neural network[J]. Power system protection and control, 2012, 40(11): 93-100.
[13] ZHANG W J, DANG H S, SIMOES R.A new solar power output prediction based on hybrid forecast engine and decomposition model[J]. ISA transactions, 2018, 81: 105-120.
[14] 王英立, 陶帅, 侯晓晓, 等. 基于MIV分析的GA-BP神经网络光伏短期发电预测[J]. 太阳能学报, 2020, 41(8): 236-242.
WANG Y L, TAO S, HOU X X, et al.GA-BP neural network photovoltaic power generation short-term forecast based on MIV analysis[J]. Acta energiae solaris sinica, 2020, 41(8): 236-242.
[15] 刘鹏辉, 黄纯. 基于动态时间弯曲距离的小电流接地故障区段定位方法[J]. 电网技术, 2016, 40(3): 952-957.
LIU P H, HUANG C.A fault section location method for small-current grounding fault in distribution network based on dynamic time warping distance[J]. Power system technology, 2016, 40(3): 952-957.
[16] 宋军英, 崔益伟, 李欣然, 等. 改进分段线性表示与动态时间弯曲相结合的负荷曲线聚类方法[J]. 电力系统自动化, 2021, 45(2): 89-96.
SONG J Y, CUI Y W, LI X R, et al.Load curve clustering algorithm combining improved piecewise linear representation and dynamic time warping[J]. Automation of electric power systems, 2021, 45(2): 89-96.
[17] 王粟, 江鑫, 曾亮, 等. 基于VMD-DESN-MSGP模型的超短期光伏功率预测[J]. 电网技术, 2020, 44(3): 917-925.
WANG L, JIANG X, ZENG L, et al.Ultra-short-term photovoltaic power prediction based on VMD-DESN-MSGP model[J]. Power system technology, 2020, 44(3): 917-925.
[18] 余向阳, 赵怡茗, 杨宁宁, 等. 基于VMD-SE-LSSVM和迭代修正的光伏发电功率预测[J]. 太阳能学报, 2020, 41(2): 310-318.
YU X Y, ZHAO Y M, YANG N N, et al.Photovoltaic power generation forecasting based on VMD-SE-LSSVM and iterative error correction[J]. Acta energiae solaris sinica, 2020, 41(2): 310-318.
[19] 张佳伟, 张自嘉. 基于PSO-BP神经网络的短期光伏系统发电预测[J]. 可再生能源, 2012, 30(8): 28-32.
ZHANG J W, ZHANG Z J.Short-term photovoltaic system power forecasting based on PSO-BP neural network[J]. Renewable energy resources, 2012, 30(8): 28-32.
[20] 臧子婧, 吴海波, 丁海, 等. 基于优选地震属性与PSO-BP模型的煤层含气量预测[J]. 物探与化探, 2020, 44(6): 1381-1386.
ZANG Z J, WU H B, DING H, et al.Prediction of coalbed methane content based on preferred seismic attributea and PSO-BP model[J]. Geophysical & geochemical exploration, 2020, 44(6): 1381-1386.
[21] 杨健, 徐思卿, 姜尚光, 等. 基于动态时间规整的风电功率爬坡滚动修正模型[J]. 电力系统自动化, 2021, 45(16): 152-159.
YANG J, XU S Q, JIANG S G, et al.Rolling correction model of ramp for wind power based on dynamic time warping[J]. Automation of electric power systems, 2021, 45(16): 152-159.
[22] 伍林峰, 冯早, 朱雪峰. 基于优化VMD和连续隐马尔科夫模型的管道堵塞状态评估[J]. 振动与冲击, 2020, 39(22): 214-222, 233.
WU L F, FENG Z, ZHU X F.Pipeline blocking state assessment based on optimized VMD and continuous hidden Markov model[J]. Journal of vibration and shock, 2020, 39(22): 214-222, 233.

基金

煤燃烧国家重点实验室开放基金(FSKLCCA1607); 梯级水电站运行与控制湖北省重点实验室基金(2015KJX07); 产学研协同培养研究生实践创新能力机制研究项目(No.SDYJ201604)

PDF(2436 KB)

Accesses

Citation

Detail

段落导航
相关文章

/