为研究多排槽式反射镜不同位置处的风荷载特性及其互相干扰,对单个反射镜及多排反射镜进行缩尺为1/40的刚性模型测压试验,试验变量为测压模型的风攻角、风向角以及其在群镜中的位置。首先测得各工况下镜面的风压分布数据,绘制镜面风压系数等值线图和反射镜力系数变化曲线,然后分析了反射镜互相干扰对镜面风荷载的影响。研究表明:中间列首排反射镜所受风荷载最大,其阻力系数是单镜的2倍,中间列其余排反射镜阻力系数为单镜的30%~70%;边缘列首排反射镜阻力系数为单镜的1.88倍,其余各排在单镜的1.20倍以上;建议将镜场分为4类区域分别进行结构设计。
Abstract
In order to study the wind pressure characteristics and mutual interference of multi-row parabolic trough solar collectors, a single trough solar collector and multi-row trough solar collectors were subjected to a 1/40 scale pressure measurement test. The pitch angles, wind direction angles and its position were selected as the experimental variables. Firstly, the wind pressure distribution on the collector surface was measured; then, the contour map of wind pressure coefficient and changing curve of force coefficient were produced; at last, the influences of mutual interference of trough solar collectors on the wind load of collector surface were analyzed. The results show that the trough solar collectors at the first row in the middle column subjected to the maximum wind pressure, and its drag coefficient is twice that of a single collector. The drag coefficients are 30% to 70% that of single collector for the rest of the mirrors in the middle column. The drag coefficient for the collector at edge column of first row is 1.88 times that of single collector, and the rest of the rows are more than 1.2 times that of a single collector. Hence, it is recommended to divide the collector field into four types of areas for structural design.
关键词
太阳能热发电 /
槽式反射镜 /
风洞试验 /
风压分布 /
干扰效应 /
群镜
Key words
solar thermal power /
parabolic trough solar collectors /
wind tunnels /
pressure distribution /
interference effects /
solar collector fields
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SUN H H, GONG B, YAO Q, et al.A review of wind loads on heliostats and trough collectors[J]. Renewable & sustainable energy reviews, 2014, 32(1): 206-221.
[2] 邹琼, 李正农, 吴红华. 槽式聚光镜的脉动风压特性与极值风压分布[J]. 太阳能学报, 2016, 37(2): 407-414.
ZOU Q, LI Z N, WU H H.Extreme wind pressure distribution and fluctuation characteristics of trough concentrating mirror[J]. Acta energiae solaris sinica, 2016, 37(2): 407-414.
[3] 付康维. 槽式聚光镜风效应的CFD数值模拟[D]. 长沙: 湖南大学, 2014.
FU K W.CFD numerical simulation of curved mirror[D]. Changsha: Hunan University, 2014.
[4] 邓波. 槽式聚光镜抗风性能研究[D]. 重庆: 重庆大学, 2016.
DENG B.Study of wind resistant performance of parabolic condenser[D]. Chongqing: Chongqing University, 2016.
[5] 邹琼. 槽式聚光镜组系统的抗风性能研究[D]. 长沙: 湖南大学, 2016.
ZOU Q.Research on wind resistant performance of trough solar collector system[D]. Changsha: Hunan University, 2016.
[6] GB 50009—20112, 建筑结构荷载规范[S].
GB 50009—2012, Load code for the design of building structures[S].
[7] 孙瑛, 武岳, 曹正罡. 建筑风洞实验指南[M]. 北京: 中国建筑工业出版社, 2011: 25-29.
SUN Y, WU Y,CAO Z G.The wind tunnel experiment guide[M]. Beijing: China Building Industry Press, 2011: 25-29.
[8] HOSOYA N, PETERKA J A, GEE R C, et al.Wind tunnel tests of parabolic trough solar collectors[R]. NREL/SR-550-32282, 2008.
[9] WINKELMANN U, KAMPER C, HOFFER R, et al.Wind actions on large-aperture parabolic trough solar collectors: Wind tunnel tests and structural analysis[J]. Renewable energy, 2020, 146: 2390-2407.