基于随机组合赋权模糊评价的风电机组健康状态评估

李进友, 李媛, 冯冰, 邢作霞, 许增金

太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 340-351.

PDF(1941 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1941 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 340-351. DOI: 10.19912/j.0254-0096.tynxb.2020-1416

基于随机组合赋权模糊评价的风电机组健康状态评估

  • 李进友1, 李媛1, 冯冰2, 邢作霞3, 许增金4
作者信息 +

WIND TURBINE HEALTH STATE ASSESSMENT BASED ON STOCHASTIC COMBINATION WEIGHTING FUZZY EVALUATION

  • Li Jinyou1, Li Yuan1, Feng Bing2, Xing Zuoxia3, Xu Zengjin4
Author information +
文章历史 +

摘要

由于健康指标权重随机性会导致风电机组状态评估灵敏度降低,提出一种评估风电机组健康状态的随机组合赋权模糊评价方法。首先,通过相关性、方差、偏度等多角度分析风电场采集与监视控制系统(SCADA)数据,结合IEC61400-1标准建立机组健康状态评估指标架构,并基于随机因子优化组合权重得到赋权公式,提高评估指标层权重的准确性。其次,为充分覆盖评估指标数据劣化度,基于岭型分布函数建立健康指标劣化隶属度计算函数。结合随机组合权重和隶属度函数,构建风电机组健康状态模糊综合评价数学模型。通过分层评估风电机组健康状态指标架构,得到机组健康等级并实现故障预警。最后,对大连驼山风电场多台机组进行评估试验,结果表明:该文方法能准确评估出风电机组健康状态等级,相比组合赋权云模型方法,灵敏度提高了1.85%。

Abstract

Since the randomness of health indicator weights will reduce the sensitivity of wind turbine states evaluation, this paper proposes a fuzzy evaluation method based on a random combination weight to evaluate the health state of wind turbines. Firstly, the supervisory control and data acquisition (SCADA) data of wind farms are analyzed through correlation, variance, skewness aspects. Combined with the IEC61400-1 standard, a health states evaluation indicator framework of wind turbines is established, and the weighting formula is obtained based on the optimal combination of random factors, by which to improve the weight accuracy of the evaluation indicator layer. Then, to fully cover the data deterioration of evaluation indicators, the membership calculation function of health indicator deterioration is established based on the ridge distribution function. Combined with the random combination weight and membership function, a fuzzy comprehensive evaluation mathematical model for wind turbine health state is established. Through hierarchical evaluation of wind turbine health state indicator framework, the health grade of the wind turbine is obtained, and fault warning is realized. Finally, multiple units in the Dalian Tuoshan wind farm are evaluated. The results show that, compared with the combined weighted cloud model, the sensitivity of the proposed method is enhanced by 1.85%, which can accurately evaluate the health state of wind turbines.

关键词

风电机组 / SCADA系统 / 模糊综合评价法 / 状态评估 / 随机因子 / 随机组合赋权

Key words

wind turbines / SCADA system / fuzzy comprehensive evaluation method / condition assessment / random factor / random combination weighting

引用本文

导出引用
李进友, 李媛, 冯冰, 邢作霞, 许增金. 基于随机组合赋权模糊评价的风电机组健康状态评估[J]. 太阳能学报. 2022, 43(8): 340-351 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1416
Li Jinyou, Li Yuan, Feng Bing, Xing Zuoxia, Xu Zengjin. WIND TURBINE HEALTH STATE ASSESSMENT BASED ON STOCHASTIC COMBINATION WEIGHTING FUZZY EVALUATION[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 340-351 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1416
中图分类号: TM614   

参考文献

[1] DONG J, VIRÉ A.Comparative analysis of different criteria for the prediction of vortex ring state of floating offshore wind turbines[J]. Renewable energy, 2021, 163: 882-909.
[2] 刘玉山, 王灵梅, 孟恩隆, 等. 基于实测数据的风电机组动态调节性能研究[J]. 电网技术, 2020, 44(11): 4328-4341.
LIU Y S, WANG L M, MENG E L, et al.Study on dynamic regulation performance of wind turbine based on measured data[J]. Power grid technology, 2020, 44(11): 4328-4341.
[3] ZHU Y C, ZHU C C, SONG C H, et al.Improvement of reliability and wind power generation based on wind turbine real-time condition assessment[J]. International journal of electrical power & energy systems, 2019, 113: 344-354.
[4] WU X L, HU F.Analysis of ecological carrying capacity using a fuzzy comprehensive evaluation method[J]. Ecological indicators, 2020, 113: 106243.
[5] 郑小霞, 李美娜. 基于小波包和并行隐马尔科夫的风力机易损部件健康状态评价[J]. 太阳能学报, 2019, 40(2): 370-379.
ZHENG X X, LI M N.Health state evaluation of vulnerable components of wind turbines based on wavelet packet and parallel hidden marko[J]. Acta energiae solaris sinica, 2019, 40(2): 370-379.
[6] 黄玲玲, 符杨, 任浩瀚, 等. 基于状态信息的风电机组维护研究综述[J]. 中国电机工程学报, 2020, 40(21): 7065-7077.
HUANG L L, FU Y, REN H H, et al.Overview of wind turbine maintenance research based on state information[J]. Proceedings of the CSEE, 2020, 40(21): 7065-7077.
[7] 孙海蓉, 王皓茹, 王瑞珈, 等. 基于云模型的风电机组运行状态评价[J]. 电力科学与工程, 2020, 36(8): 57-62.
SUN H R, WANG H R, WANG R J, et al.Evaluation of wind turbine operation state based on cloud model[J]. Electric power science and engineering, 2020, 36(8): 57-62.
[8] SUN Z X, SUN H X.Health status assessment for wind turbine with recurrent neural networks[J]. Mathematical problems in engineering, 2018, 2018: 1-16.
[9] 董兴辉, 张鑫淼, 郑凯, 等. 基于组合赋权和云模型的风电机组健康状态评估[J]. 太阳能学报, 2018, 39(8): 2139-2146.
DONG X H, ZHANG X M, ZHENG K, et al.Health status assessment of wind turbines based on combination empowerment and cloud model[J]. Acta energiae solaris sinica, 2018, 39(8): 2139-2146.
[10] ZHENG K, HAN L N, GUO S L, et al.Fuzzy synthetic condition assessment of wind turbine based on combination weighting and cloud model[J]. Journal of intelligent & fuzzy systems, 2017, 32(6): 4563-4572.
[11] FANG R M, WU M L, JIANG S H, et al.On-line status assessment of wind turbines based on improved fuzzy comprehensive evaluation method[J]. Journal of intelligent & fuzzy systems, 2016, 31(6): 2813-2819.
[12] 江顺辉, 方瑞明, 尚荣艳, 等. 采用动态劣化度的风电机组运行状态实时评估[J]. 华侨大学学报(自然科版), 2018, 39(1): 86-91.
JIANG S H, FANG R M, SHANG R Y, et al.Real-time evaluation of wind turbine operation State using dynamic degradation[J]. Journal of Huaqiao University(natural science edition), 2018, 39(1): 86-91.
[13] CHENG W J, XI H Y, SINDIKUBWABO C, et al.Ecosystem health assessment of desert nature reserve with entropy weight and fuzzy mathematics methods: a case study of badain jaran desert[J]. Ecological indicators, 2020, 119: 106843.
[14] 肖运启, 王昆朋, 贺贯举, 等. 基于趋势预测的大型风电机组运行状态模糊综合评价[J]. 中国电机工程学报, 2014, 34(13): 2132-2139.
XIAO Y Q, WANG K P, HE G J, et al.Fuzzy comprehensive evaluation of operation state of large wind turbine based on trend prediction[J]. Proceedings of the CSEE, 2014, 34(13): 2132-2139.
[15] 黄必清, 何焱, 王婷艳. 基于模糊综合评价的海上直驱风电机组运行状态评估[J]. 清华大学学报(自然科学版), 2015, 55(5): 543-549.
HUANG B Q, HE Y, WANG T Y.Operation state evaluation of offshore DIRECT-driven wind turbines based on fuzzy comprehensive evaluation[J]. Journal of Tsinghua University(natural science edition), 2015, 55(5): 543-549.
[16] ZHU H T, HAO W X, Li C, et al.Effect of geometric parameters of gurney flap on performance enhancement of straight-bladed vertical axis wind turbine[J]. Renewable energy, 2021, 165(P1): 464-480.
[17] HAN S, QIAO Y H, YAN P, et al.Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles[J]. Renewable energy, 2020, 157: 190-203.
[18] BAAK M, KOOPMAN R, SNOEK H, et al.A new correlation coefficient between categorical, ordinal and interval variables with pearson characteristics[J]. Computational statistics and data analysis, 2020, 152: 107043.
[19] ABDI M, MADADI M, NARAYANASWAMY B, et al.Family of mean-mixtures of multivariate normal distributions: Properties, inference and assessment of multivariate skewness[J]. Journal of multivariate analysis, 2021, 181: 104679.
[20] 邢月, 顾煜炯, 马丽. 考虑风速波动的风电机组状态评估[J]. 自动化仪表, 2019, 40(3): 28-32.
XING Y, GU Y J, MA L.Wind turbine state evaluation considering wind speed fluctuation[J]. Automatic instrumentation, 2019, 40(3): 28-32.
[21] 穆永铮, 鲁宗相, 乔颖, 等. 基于多算子层次分析模糊评价的电网安全与效益综合评价指标体系[J]. 电网技术, 2015, 39(1): 23-28.
MU Y Z, LU Z X, QIAO Y, et al.Comprehensive evaluation indicators system of power grid safety and efficiency based on fuzzy evaluation of multi-operator hierarchical analysis[J]. Power grid technology, 2015, 39(1): 23-28.
[22] 茆诗松. 概率论与数理统计教程[M]. 北京: 高等教育出版社, 2011.
MAO S S.Course of probability theory and mathematical statistics[M]. Beijing: Higher Education Press, 2011.
[23] WIBOWO N, WIDODO C E, Adi K.Implementing the shortest time route search algorithm in semarang using the best first search method[J]. IOP conference series materials science and engineering, 2020, 879: 012165.
[24] 崔建国, 林泽力, 吕瑞, 等. 基于模糊灰色聚类和组合赋权法的飞机健康状态综合评价方法[J]. 航空学报, 2014, 35(3): 764-772.
CUI J G, LIN Z L, LYU R, et al.Comprehensive evaluation method of aircraft health State based on fuzzy grey clustering and combined weight method[J]. Acta aeronautica sinica, 2014, 35(3): 764-772.
[25] WANG H X, YANG J Y, CHEN Z, et al.Analysis and suppression for frequency oscillation in a wind-diesel system[J]. IEEE access, 2019, 7: 22818-22828.
[26] LI J, LI Z Y, ZHOU Q, et al.Improved scheme of membership function optimisation for fuzzy air-fuel ratio control of GDI engines[J]. IET intelligent transport systems, 2019, 13(1): 209-217.
[27] 赵嘉玉, 韩肖清, 梁琛, 等. 隶属函数与欧氏距离相结合的配电网优化重构[J]. 电网技术, 2017, 41(11): 3624-3631.
ZHAO J Y, HAN X Q, LIANG C, et al.Optimization and reconstruction of distribution networks with the combination of subjection function and euclidian distance[J]. Power grid technology, 2017, 41(11): 3624-3631.
[28] WANG B.Research on the implementation path of cooperative management of marine ecological environment in China based on fuzzy comprehensive evaluation model[J]. Journal of coastal research, 2020, 115(SP1): 268-270.

基金

辽宁省自然科学基金(2019-ZD-0202)

PDF(1941 KB)

Accesses

Citation

Detail

段落导航
相关文章

/