基于人工神经网络的3 kW质子交换膜燃料电池电堆一致性优化

石磊, 许思传, 刘泽

太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 498-503.

PDF(2014 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2014 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 498-503. DOI: 10.19912/j.0254-0096.tynxb.2020-1426

基于人工神经网络的3 kW质子交换膜燃料电池电堆一致性优化

  • 石磊, 许思传, 刘泽
作者信息 +

CONSISTENCY OPTIMIZATION OF 3 kW PROTON EXCHANGE MEMBRANE FUEL CELL STACK BASED ON ARTIFICIAL NEURAL NETWORK

  • Shi Lei, Xu Sichuan, Liu Ze
Author information +
文章历史 +

摘要

电堆工作过程中各个单体电压的一致性是提高其性能的关键,在3 kW电堆台架实验数据的基础上,利用人工神经网络(ANN)模型,对空气流量、氢气压力、过量空气系数等气体供给参数进行优化,并对优化前后电堆的功率特性、一致性特性进行对比分析。结果表明:当氢气入口压力为0.128 MPa、空气入口流量为11 g/s、过量空气系数为6.4时,电堆电压差异系数CV及功率参数可达到最佳。

Abstract

The consistency of each cell's voltage is the key to improving PEMFC stack performance. Based on the experimental data of 3 kW stack, this paper utilizes an artificial neural network(ANN) model to optimize the gas supply parameters, including airflow rate, hydrogen pressure and excess air coefficient. Simultaneously, the power and consistency characteristics of the stack before and after optimization are compared and analyzed. The results show that the CV and power parameters can achieve best when the inlet pressure of hydrogen is 0.128 MPa, the inlet flow rate of air is 11 g/s, and the excess air coefficient is 6.4.

关键词

质子交换膜燃料电池 / 耐久性 / 一致性 / 人工神经网络 / 水桶效应

Key words

proton exchange membrane fuel cell / durability / consistency / artificial neural network / bucket effect

引用本文

导出引用
石磊, 许思传, 刘泽. 基于人工神经网络的3 kW质子交换膜燃料电池电堆一致性优化[J]. 太阳能学报. 2022, 43(8): 498-503 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1426
Shi Lei, Xu Sichuan, Liu Ze. CONSISTENCY OPTIMIZATION OF 3 kW PROTON EXCHANGE MEMBRANE FUEL CELL STACK BASED ON ARTIFICIAL NEURAL NETWORK[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 498-503 https://doi.org/10.19912/j.0254-0096.tynxb.2020-1426
中图分类号: TM911.4   

参考文献

[1] PEI P C, CHEN H C.Main factors affecting the lifetime of proton exchange membrane fuel cells in vehicle applications: a review[J]. Applied energy, 2014, 125(15): 60-75.
[2] 余意, 潘牧. 质子交换膜燃料电池启停控制策略研究进展[J]. 化工进展, 2010, 29(10): 1857-1862, 1897.
YU Y, PAN M.Research progress in system strategies of startup-shutdown for PEMFC[J]. Chemical industry and engineering progress, 2010, 29(10): 1857-1862, 1897.
[3] ZENG T, ZHANG C Z, HU M H, et al.Modelling and predicting energy consumption of a range extender fuel cell hybrid vehicle[J]. Energy, 2018, 165: 187-197.
[4] LIU P C, XU S C, FU J X, et al.Experimental investigation on the voltage uniformity for a PEMFC stack with different dynamic loading strategies[J]. International journal of hydrogen energy, 2020, 45(50): 26490-26500.
[5] SUN H, XIE C, CHEN H, et al.A numerical study on the effects of temperature and mass transfer in high temperature PEM fuel cells with ab-PBI membrane[J]. Applied energy, 2015, 160(15): 937-944.
[6] GHOSH P C, DOHLE H, MERGEL J.Modelling of heterogeneities inside polymer electrolyte fuel cells due to oxidants[J]. International journal of hydrogen energy, 2009, 34(19): 8204-8212.
[7] SIEGEL J B, MCKAY D A, STEFANOPOILOU A G, et al.Measurement of liquid water accumulation in a PEMFC with dead-ended anode[J]. Journal of the Electrochemical Society, 2008, 155(11): 757-768.
[8] JANG J H, YAN W M, CHIU H C, et al.Dynamic cell performance of kW-grade proton exchange membrane fuel cell stack with dead-ended anode[J]. Applied energy, 2015, 142(15): 108-114.
[9] HU Z, XU L, LI J, et al.A novel diagnostic methodology for fuel cell stack health: performance, consistency and uniformity[J]. Energy conversion & management, 2019, 185: 611-621.
[10] BENOUIOUS D, CANDUSSO D, HAREL F, et al.PEMFC stack voltage singularity measurement and fault classification[J]. International journal of hydrogen energy, 2014, 39(36): 21631-21637.
[11] LI M, DAI C H, GUO A, et al.Experimental study on dynamic voltage uniformity of a 2 kW air-cooled PEMFC[J]. Electrical engineering, 2018, 100: 2725-2735.
[12] ZHAO Y Q, FU Y, DAI C H, et al.The dynamic voltage uniformity of the commonly-controlled kW-class Air-cooled PEMFC[C]//2016 35th Chinese Control Conference(CCC), IEEE, Chengdu, China, 2016.
[13] CHEN W R, LIU J W, GUO A, et al.Experimental study on voltage uniformity of 14.4 kW PEMFC stack single cell[J]. Journal of Southwest Jiaotong University, 2017, 52(3): 429-438.
[14] CORBO P, MIGLIARDINI F, VENERI O.Dynamic behaviour of hydrogen fuel cells for automotive application[J]. Renewable energy, 2009, 34(8): 1955-1961.
[15] MIGLIARDINI F, PALMA T M D, GAELE M F, et al. Cell voltage analysis of a 6 kW polymeric electrolyte fuel cell stack designed for hybrid power systems[J]. Materials today: proceedings, 2019, 10: 393-399.
[16] HU Z Y, XU L F, LI J Q, et al.The uniformity and consistency analysis of a fuel cell stack with multipoint voltage-monitoring method[J]. Energy procedia, 2019, 158: 2118-2125.
[17] CHEN S Q,BAO N,GARG Y, et al.A fast-charging-cooling coupled scheduling method for a liquid cooling-based thermal management system for Li-ion batteries[J]. Engineering, 2020, 7(8): 1165-1176.

基金

国家重点研发计划(2017YFB0102802)

PDF(2014 KB)

Accesses

Citation

Detail

段落导航
相关文章

/