建立气-气增湿器的数学理论模型,并基于Amesim软件建立燃料电池增湿器及空气系统仿真模型,从燃料电池系统层面分析干湿侧不同温度、压力、水含量等输入条件下的干侧出口空气的湿度变化情况,并采用水转移率(water vapor transfer rate,WVTR)对增湿器增湿性能进行评价,结果表明此模型可进行前期验证,能较好地预测汽车运行过程中增湿器的动态响应特性。
Abstract
The humidity of the cathode air inlet of the proton exchange membrane fuel cell(PEMFC) stack has an important influence on the performance of the stack. The mathematical theoretical model of air-air humidifier is established, and moreover, the simulation model of the fuel cell humidifier and air system is developed based on Amesim software. From the fuel cell system level, the humidity change of the dry side outlet air is analyzed under different input conditions, including temperature, pressure, and water content on the dry and wet sides. The water transfer rate(WVTR) is employed to evaluate the humidification performance of the humidifier. The results show that the model can be used for verification in the early stage and well predict the dynamic response characteristics of the humidifier during the operation of the car.
关键词
质子交换膜燃料电池 /
建模 /
仿真 /
增湿器 /
Amesim /
水转移率
Key words
proton exchange membrane fuel cells /
modeling /
simulation /
humidifier /
Amesim /
water vapor transfer(WVTR)
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] VINCENT R, ALEXANDRE V, SANDRINE M, et al.Definition of efficiency criteria for a fuel cell humidifier:application to a low power proton exchange membrane fuel cell system for negative surrounding temperatures[J]. Applied thermal engineering, 2013, 58(1-2): 382-393.
[2] IBRAHIM M S, RASHID A, ZHANG H W.Experimental testing and validation of the mathematical model for a self-humidifying PEM fuel cell[J]. Journal of materials science and chemical engineering, 2018, 6(4): 202-218.
[3] SUBIN K, JITHESH P K.Experimental study on self-humidified operation in PEM fuel cells[J]. Sustainable energy technologies and assessments, 2018, 27: 17-22.
[4] MA T C, WANG K, ZHOU Q Q, et al.Numerical study on humidification performance of fuel cell test platform humidifier[J]. Energies, 2019, 12(20): 1-4.
[5] YU S, IM S, KIM S, et al.A parametric study of the performance of a planar membrane humidifier with a heat and mass exchanger model for design optimization[J]. Heat mass transfer, 2011, 54(7-8): 1344-1351.
[6] PARK S, OH I.An analytical model of NafionTM membrane humidifier for proton exchange membrane fuel cells[J]. Journal of power sources, 2008, 188(2): 498-501.
[7] EDARD M C, SARAH F, WALTER M.Response surface methods for membrane humidifier performance[J]. Journal of power sources, 2013, 239: 399-408.
[8] RICHARD E S, CLAUS B.Fundamentals of thermodynamics[M]. Fifth Edition. New York: Wiley, 1998: 438-457.
[9] 张磊, 王仁广, 徐元利, 等. 基于AMESim的燃料电池系统仿真与分析[J]. 汽车工程师, 2020(3): 32-36.
ZHANG L, WANG R G, XU Y L, et al.Simulation and analysis of fuel cell system based on AMESim[J]. Automotive engineer, 2020(3): 32-36.
[10] 王鸿鹄, 吴兵, 何雍, 等. 新型膜增湿器实验方法研究及结果分析[J]. 电源技术, 2013, 37(7): 1151-1152,1193.
WANG H H, WU B, HE Y, et al.Experimental method research and result analysis of a new membrane humidifier[J]. Power technology, 2013, 37(7): 1151-1152, 1193.
[11] BHATIA D, SABHARWAL M, DUELK C.Analytical model of a membrane humidifier for polymer electrolyte membrane fuel cell systems[J]. Heat mass transfer, 2013, 58(1-2): 702-717.
[12] BAHARLOU H N, GHAEDAMINI M, SHOKOUHMAND H, et al.Experimental study on performance of membrane humidifiers with different configurations and operating conditions for PEM fuel cells[J]. International journal of hydrogen energy, 2020, 45(7): 4841-4859.
[13] CHEN D M, LI W, PENG H.An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control[J]. Journal of power sources, 2008, 180(1): 461-467.
基金
先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室)开放基金(XHD2020-003)