直膨式太阳能热泵微通道集热/蒸发器制冷剂分布特性

孔祥强, 马廷东, 马善乐, 李瑛, 李见波

太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 236-244.

PDF(2718 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2718 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 236-244. DOI: 10.19912/j.0254-0096.tynxb.2021-0010

直膨式太阳能热泵微通道集热/蒸发器制冷剂分布特性

  • 孔祥强, 马廷东, 马善乐, 李瑛, 李见波
作者信息 +

DISTRIBUTION CHARACTERISTICS OF REFRIGERANT IN MICROCHANNEL COLLECTOR/EVAPORATOR OF DIRECT-EXPANSION SOLAR-ASSISTED HEAT PUMP

  • Kong Xiangqiang, Ma Tingdong, Ma Shanle, Li Ying, Li Jianbo
Author information +
文章历史 +

摘要

为研究微通道集热/蒸发器内制冷剂分布及对直膨式太阳能热泵系统性能的影响,搭建以丙烷(R290)为制冷剂的系统实验平台。基于实验数据,提出一种利用红外成像技术分析微通道集热/蒸发器内两相态制冷剂分布的方法,获得了电子膨胀阀开度、太阳辐射强度以及环境温度对集热/蒸发器内两相态制冷剂分布情况的影响特性。结果表明:当电子膨胀阀开度由20%增至60%时,集热/蒸发器的制冷剂分布参数(RDP)提高10.6%,系统性能系数(COP)从2.8升至5.5。较高的太阳辐射强度或环境温度可有效避免制冷剂回流现象。

Abstract

In order to investigate the refrigerant distribution in a microchannel collector/evaporator and its influence on the performance of a direct-expansion solar-assisted heat pump (DX-SAHP) system, an experimental setup of the DX-SAHP system using propane (R290) was built. Based on the experimental data, a method using infrared imaging technology to analyze the two-phase refrigerant distribution in the microchannel collector/evaporator was proposed. The effects of the electronic expansion valve opening, the solar radiation intensity and the ambient temperature on the two-phase refrigerant distribution in the collector/evaporator were obtained. The results show that when the electronic expansion valve opening increases from 20% to 60%, the refrigerant distribution parameter (RDP) of the microchannel collector/evaporator increases 10.6%, and the system coefficient of performance (COP) has also a marked increase from 2.8 to 5.5. The higher solar radiation intensity or ambient temperature can avoid the occurrence of refrigerant backflow in the microchannel collector/evaporator.

关键词

太阳能 / 热泵系统 / 红外成像 / 丙烷 / 微通道集热/蒸发器 / 制冷剂分布

Key words

solar energy / heat pump systems / infrared imaging / propane / microchannel collector/evaporator / refrigerant distribution

引用本文

导出引用
孔祥强, 马廷东, 马善乐, 李瑛, 李见波. 直膨式太阳能热泵微通道集热/蒸发器制冷剂分布特性[J]. 太阳能学报. 2022, 43(8): 236-244 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0010
Kong Xiangqiang, Ma Tingdong, Ma Shanle, Li Ying, Li Jianbo. DISTRIBUTION CHARACTERISTICS OF REFRIGERANT IN MICROCHANNEL COLLECTOR/EVAPORATOR OF DIRECT-EXPANSION SOLAR-ASSISTED HEAT PUMP[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 236-244 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0010
中图分类号: TK519   

参考文献

[1] BWLLOS E, TZIVANIDIS C.Energetic and financial sustainability of solar assisted heat pump heating systems in Europe[J]. Sustainable cities and society, 2017, 33: 70-84.
[2] BUKER M S, RIFFAT S B.Solar assisted heat pump systems for low temperature water heating applications: a systematic review[J]. Renewable & sustainable energy reviews, 2016, 55: 399-413.
[3] CHEN J F, DAI Y J, WANG R Z.Experimental and theoretical study on a solar assisted CO2 heat pump for space heating[J]. Renewable energy, 2016, 89: 295-304.
[4] 马坤茹, 李雪峰, 李思琦, 等. 新型太阳能/空气能直膨式热泵与空气源热泵供热性能对比[J]. 化工学报, 2020, 71(S1): 375-381.
MA K R, LI X F, LI S Q, et al.Contrastive research of heating performance of direct expansion solar/air assisted heat pump system and air-source heat pump[J]. CIECS journal, 2020, 71(S1): 375-381.
[5] GHOUBALI R, BYRNE P, BAZANTAY F.Refrigerant charge optimisation for propane heat pump water heaters[J]. International journal of refrigeration, 2017, 76: 230-244.
[6] HARBY K.Hydrocarbons and their mixtures as alternative to environmental unfriendly halogenated refrigerants: an updated overview[J]. Renewable & sustainable energy reviews, 2017, 73: 1247-1264.
[7] KIM M H, BULLARD C W.Performance evaluation of a window room air conditioner with microchannel condenser[J]. Journal of energy resources technology, 2002, 124: 47-66.
[8] PARK C Y, HRNJAK P.Experimental and numerical study on micro channel and round-tube condensers in a R410A residential air-conditioning system[J]. International journal of refrigeration, 2008, 31: 822-831.
[9] KULKARNI T, BULLARD C W, CHO K.Header design tradeoffs in microchannel evaporators[J]. Applied thermal engineering, 2004, 24: 759-776.
[10] VIST S, PETTERSEN J.Two-phase flow distribution in compact heat exchanger manifolds[J]. Experimental thermal and fluid science, 2004, 28: 209-215.
[11] KOYAMA S, AGUNG T W, KEN K, et al.Developing two-phase flow distribution in horizontal headers with downward micro-channel branches[C] // 11th International Refrigeration and Air Conditioning Conference, Purdue, 2006.
[12] BOWERS C D, HRNJAK P, NEWELL T.Two-phase refrigerant distribution in a micro-channel manifold[C] // 11th International Refrigeration and Air Conditioning Conference, Purdue, 2006.
[13] HWANG Y, JIN D H, RADERMACHER R.Refrigerant distribution in minichannel evaporator manifolds[J]. HVAC&R research, 2007, 13(4): 543-555.
[14] KIM N H, KIM D Y, BYUN H W.Effect of inlet configuration on the refrigerant distribution in a parallel flow heat exchanger header[J]. International journal of refrigeration, 2011, 34: 1209-1221.
[15] KIM N H, KIM D Y, BYUN H W.Effect of inlet configuration on upward branching of two-phase refrigerant in parallel flow heat exchanger[J]. International journal of refrigeration, 2013, 36: 1062-1077.
[16] LI H Z, HRNJAK P S.Quantification of liquid refrigerant distribution in parallel flow microchannel heat exchanger using infrared thermography[J]. Applied thermal engineering, 2015, 78: 410-418.
[17] KIM N H, KIM C H, SHAH Y, et al.Improvement of two-phase refrigerant distribution for upward flow of a parallel flow minichannel heat exchanger using insertion devices[J]. Applied thermal engineering, 2019, 160: 1359-4311.
[18] BYUN H W, KIM N H.Refrigerant distribution in a parallel flow heat exchanger having vertical headers and heated horizontal tubes[J]. Experimental thermal and fluid science, 2011, 35: 920-932.
[19] ZOU Y, HRNJAK P S.Experiment and visualization on R-134a upward flow in the vertical header of microchannel heat exchanger and its effect on distribution[J]. International journal of heat mass transfer, 2013, 62: 124-134.
[20] BYUN H W, KIM N H.Two-phase refrigerant distribution in a two row/four pass parallel flow minichannel heat exchanger[J]. Experimental thermal and fluid science, 2016, 77: 10-27.
[21] KONG X Q, ZHANG D, LI Y, et al.Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater[J]. Energy, 2011, 36(12): 6830-6838.
[22] KONG X Q, LI Y, LIN L, et al.Modeling evaluation of a direct-expansion solar-assisted heat pump water heater using R410A[J]. International journal of refrigeration, 2017, 76: 136-146.
[23] KONG X Q, JIANG K L, DONG S D, et al.Control strategy and experimental analysis of a direct-expansion solar-assisted heat pump water heater with R134a[J]. Energy, 2018, 145: 17-24.
[24] KONG X Q, WANG B G, SHANG Y P, et al. Influence of different regulation modes of compressor speed on the performance of direct-expansion solar-assisted heat pump water heater[J]. Applied thermal engineering, 2020, 169: 115007(1-14).
[25] KONG X Q, LI J Y, WANG B G, et al.Numerical study of a direct-expansion solar-assisted heat pump water heater under frosting conditions based on experiments[J]. Solar energy, 2020, 196: 10-21.
[26] KONG X Q, YANG Y M, ZHANG M Y, et al.Experimental investigation on a direct-expansion solar-assisted heat pump water heater using R290 with micro-channel heat transfer technology during the winter period[J]. International journal of refrigeration, 2020, 113: 38-48.
[27] 孔祥强, 杨允国, 林琳, 等. R410A直膨式太阳能热泵热水器制冷剂分布特性[J]. 农业工程学报, 2014, 30(12): 177-183.
KONG X Q, YANG Y G, LIN L, et al.Refrigerant distribution characteristics of direct-expansion solar-assisted heat pump water heater with R410A[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(12): 177-183.
[28] 孔祥强, 李俊枭, 杨允国, 等. R290直膨式太阳能热泵系统工质分布和迁移特性模拟[J]. 太阳能学报, 2016, 37(10): 2585-2592.
KONG X Q, LI J X, YANG Y G, et al.Simulation of working medium distribution and migration characteristics of R290 direct expansion solar heat pump system[J]. Acta energiae solaris sinica, 2016, 37(10): 2585-2592.
[29] 盛伟, 兰庆云, 裴阳, 等. 结霜工况下微通道蒸发器制冷剂分布特性[J]. 制冷学报, 2019, 40(2): 43-50.
SHENG W, LAN Q Y, PEI Y, et al.Distribution characteristics of refrigerant in micro-channel evaporator under frosting conditions[J]. Journal of refrigeration, 2019, 40(2): 43-50.
[30] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 248.
YANG S M, TAO W Q.Heat transfer[M]. 4nd ed. Beijing: Higher Education Press, 2006: 248.
[31] ITO S, MIURA N, WANG K.Performance of a heat pump using direct expansion solar collectors[J]. Solar energy, 1999, 65(3): 189-196.
[32] BOWERS C D, WUJEK S S, HRNJAK P S.Quantification of refrigerant distribution and effectiveness in microchannel heat exchangers using infrared thermography[C]//International Refrigeration and Air Conditioning Conference, Purdue, 2010.

基金

国家自然科学基金面上项目(51776115); 山东省研究生导师指导能力提升项目(SDYY17037); 山东科技大学研究生导师指导能力提升计划(KDYC17009)

PDF(2718 KB)

Accesses

Citation

Detail

段落导航
相关文章

/