[1] 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 1-14. DING M, WANG W S, WANG X L, et al.A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE, 2014, 34(1): 1-14. [2] GANDOMAN F H, ABDEL ALEEM S H E, OMAR N, et al. Short-term solar power forecasting considering cloud coverage and ambient temperature variation effects[J]. Renewable energy, 2018, 123(8): 793-805. [3] KOSTER D, MINETTE F, BRAUN C, et al.Short-term and regionalized photovoltaic power forecasting, enhanced by reference systems, on the example of luxembourg[J]. Renewable energy, 2019, 132(3): 455-470. [4] ESEYE A T, ZHANG J, ZHENG D.Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and meteorological information[J]. Renewable energy, 2017, 118(4): 357-367. [5] FEI M, YI P, KEDONG Z, et al.A hybrid online forecasting model for ultrashort-term photovoltaic power generation[J]. Sustainability, 2018, 10(3): 820-836. [6] HUANG C, CAO L, PENG N, et al.Day-ahead forecasting of hourly photovoltaic power based on robust multilayer perception[J]. Sustainability, 2018, 10(12): 4863-4870. [7] 王育飞, 付玉超, 孙路, 等. 基于混沌-RBF神经网络的光伏发电功率超短期预测模型[J]. 电网技术, 2018, 42(4): 1110-1116. WANG Y F, FU Y C, SUN L, et al.Ultra-short term prediction model of photovoltaic output power based on Chaos-RBF neural network[J]. Power system technology, 2018, 42(4): 1110-1116. [8] 张晓波, 张保会, 吴雄. 风光预测后微电网的优化运行[J]. 电力自动化设备, 2016, 36(3): 21-25. ZHANG X B, ZHANG B H, WU X.Ptimal microgrid operation based on wind/PV power prediction[J]. Electric power automation equipment, 2016, 36(3): 21-25. [9] RODRIGUES S, MUTTER G, RAMOS H G.Machine learning photovoltaic string analyzer[J]. Entropy, 2020, 22(2): 205. [10] 王小杨, 罗多, 孙韵琳, 等. 基于ABC-SVM和PSO-R的光伏微电网日发电功率组合预测方法研究[J]. 太阳能学报, 2020, 41(3): 177-183. WANG X Y, LUO D, SUN Y L, et al.Combined forecasting method of daily photovoltaic power generation in microgrin based on ABC-SVM and PSO-RF models[J]. Acta energiae solaris sinica, 2020, 41(3): 177-183. [11] SHENG H M, XIAO J, CHENG Y H, et al.Short-term solar power forecasting based on weighted gaussian process regression[J]. IEEE transactions on industrial electronics, 2018, 65(1): 300-308. [12] 吉锌格, 李慧, 刘思嘉, 等. 基于MIE-LSTM的短期光伏功率预测[J]. 电力系统保护与控制, 2020, 48(7): 50-57. JI X G, LI H, LIU S J, et al.Short-term photovoltaic power forecasting based on MIE-LSTM[J]. Power system protection and control, 2020, 48(7): 50-57. [13] 高阳, 张碧玲, 毛京丽, 等. 基于机器学习的自适应光伏超短期出力预测模型[J]. 电网技术, 2015, 39(2): 307-311. GAO Y, ZHANG B L, MAO J L, et al.Machine learning-based adaptive very-short-term forecast model for photovoltaic power[J]. Power system technology, 2015, 39(2): 307-311. [14] LARSON D P, NONNENMACHER L, COIMBRA C F M. Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest[J]. Renewable energy, 2016, 91(7): 11-20. [15] 阳霜, 罗滇生, 何洪英, 等. 基于EMD-LSSVM的光伏发电系统功率预测方法研究[J]. 太阳能学报, 2016, 37(6): 1387-1395. YANG S, LUO D S, HE H Y, et al.Output power porecast of PV power system based on EMD-LSSVM model[J]. Acta energiae solaris sinica, 2016, 37(6): 1387-1395. [16] LI P M, ZANG C Z, WANG K K, et al.Photovoltaic generation prediction based on similar days and neural network[J]. Renewable energy resources, 2013, 31(10): 1-4. [17] 王粟, 江鑫, 曾亮, 等. 基于VMD-DESN-MSGP模型的超短期光伏功率预测[J]. 电网技术, 2020, 44(3): 917-926. WANG L, JIANG X, ZENG L, et al.Ultra-short-term photovoltaic power prediction based on VMD-DESN-MSGP model[J]. Power system technology, 2020, 44(3): 917-926. |