欢迎访问《太阳能学报》官方网站,今天是 分享到:
ISSN 0254-0096 CN 11-2082/K

太阳能学报 ›› 2022, Vol. 43 ›› Issue (8): 96-103.DOI: 10.19912/j.0254-0096.tynxb.2021-0043

• • 上一篇    下一篇

基于VMD-LSTM与误差补偿的光伏发电超短期功率预测

王福忠, 王帅峰, 张丽   

  1. 河南理工大学电气工程与自动化学院,焦作 454000
  • 收稿日期:2021-01-11 出版日期:2022-08-28 发布日期:2023-02-28
  • 通讯作者: 张 丽(1982—),女,博士、副教授,主要从事智能用电信息处理技术方面的研究。dqzhangli@hpu.edu.cn
  • 基金资助:
    国家自然科学基金(61403284); 河南省科技攻关项目(202102210295; 212102210146); 河南理工大学青年骨干项目(2019XQG-17)

ULTRA SHORT TERM POWER PREDICTION OF PHOTOVOLTAIC POWER GENERATION BASED ON VMD-LSTM AND ERROR COMPENSATION

Wang Fuzhong, Wang Shuaifeng, Zhang Li   

  1. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China
  • Received:2021-01-11 Online:2022-08-28 Published:2023-02-28

摘要: 光伏序列具有的较高复杂性对光伏发电功率的预测精度产生了极大影响,对此提出一种基于VMD-LSTM与误差补偿的光伏发电超短期功率预测模型。该模型第1阶段采用VMD算法将原始功率序列分解为若干个不同的模态,并对其建立对应的LSTM网络模型进行预测,通过对各模态的预测结果求和得到初始预测功率;第2阶段采用LSTM网络对误差序列进行误差补偿预测,然后将初始预测功率和误差预测功率求和得到最终预测结果。仿真结果表明,该预测模型对天气具有较高的适应性,预测精度达到97%以上。

关键词: 光伏发电, 功率预测, 深度学习, 长短期记忆, 变分模态分解, 误差补偿

Abstract: The high complexity of photovoltaic sequences has a great impact on the prediction accuracy of photovoltaic power generation. Therefore, an ultra-short-term power prediction model of photovoltaic power generation based on VMD-LSTM and error compensation is proposed. In the first stage of the model,the VMD algorithm is used to decompose the original power sequence into several different modes,and the corresponding LSTM network model is established for prediction,and the initial predicted power is obtained by summing the prediction results of each mode;In the second stage, the LSTM network is used to perform error compensation prediction on the error sequence,and then the initial prediction power and the error prediction power are summed to get the final prediction result. The simulation results show that the prediction model has high adaptability to the weather, and the prediction accuracy is over 97%.

Key words: PV power generation, power forecasting, deep learning, long short-term memory, variational mode decomposition, error compensation

中图分类号: