基于多传感器信息融合的太阳电池动态建模

李培兴, 彭乐乐, 张慧玲, 郑树彬, 柴晓冬, 林建辉

太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 108-115.

PDF(2103 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2103 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 108-115. DOI: 10.19912/j.0254-0096.tynxb.2021-0044

基于多传感器信息融合的太阳电池动态建模

  • 李培兴1, 彭乐乐2, 张慧玲2, 郑树彬2, 柴晓冬2, 林建辉3
作者信息 +

DYNAMIC MODELING OF SOLAR CELLS BASED ON MULTI-SENSOR INFORMATION FUSION

  • Li Peixing1, Peng Lele2, Zhang Huiling2, Zheng Shubin2, Chai Xiaodong2, Lin Jianhui3
Author information +
文章历史 +

摘要

为获取运动状态下太阳电池输出特性,提出一种基于多传感器信息融合的太阳电池动态建模方法。基于多传感器信息融合测量模型、欧式空间旋转理论、光照强度与太阳电池空间位置关系和太阳电池数学模型及其参数与光照强度之间耦合关系,构建太阳电池动态模型得到其动态输出特性。通过SIMPACK及Matlab/Simulink仿真软件建立太阳电池动态发电仿真平台验证了方法的有效性。结果表明,载体的运动明显影响了太阳电池输出特性,且在太阳电池输出最大功率点处的功率最大减少了18.038%。

Abstract

In order to obtain the output characteristics of solar cells in motion state, a dynamic modeling method of solar cells based on multi-sensor information fusion was proposed. Based on the multi-sensor information fusion measurement model, European spatial rotation theory, the relationship between light intensity and the space position of solar cells, the solar cells model and the coupling relationship between the model parameters and light intensity, a dynamic model of solar cells was constructed to obtain the dynamic output characteristics of solar cells in motion state. The validity of the model is verified by establishing a simulation platform for dynamic power generation of solar cells by SIMPACK and Matlab/Simulink simulation software. The results show that the movement of the carrier obviously affects the output characteristics of the solar cells, and the output power of the solar cell at maximum output power point is reduced by 18.038%.

关键词

太阳电池 / 多传感器融合 / 动态建模 / 载体运动

Key words

solar cells / multisensor fusion / dynamic models / carrier movement

引用本文

导出引用
李培兴, 彭乐乐, 张慧玲, 郑树彬, 柴晓冬, 林建辉. 基于多传感器信息融合的太阳电池动态建模[J]. 太阳能学报. 2022, 43(8): 108-115 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0044
Li Peixing, Peng Lele, Zhang Huiling, Zheng Shubin, Chai Xiaodong, Lin Jianhui. DYNAMIC MODELING OF SOLAR CELLS BASED ON MULTI-SENSOR INFORMATION FUSION[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 108-115 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0044
中图分类号: TM615   

参考文献

[1] 彭乐乐, 张雯柏, 郑树彬, 等. 一种环境变化下的高效率光伏组件最大功率点跟踪方法[J]. 太阳能学报, 2019, 40(5): 1262-1266.
PENG L L, ZHANG W B, ZHENG S B, et al.New maximum power point tracking method for photovoltaic system under varying environment[J]. Acta energiae solaris sinica, 2019, 40(5): 1262-1266.
[2] PENG L L, ZHENG S B, CHAI X D, et al.A novel tangent error maximum power point tracking algorithm for photovoltaic system under fast multi-changing solar irradiances[J]. Applied energy, 2018, 210: 303-316.
[3] 张彦, 袁成清, 孙玉伟, 等. 船舶低频振动对光伏组件输出特性的影响研究[J]. 太阳能学报, 2016, 37(7): 1756-1762.
ZHANG Y, YUAN C Q, SUN Y W.Study on effect of ship low frequency vibration on the output characteristics of PV module[J]. Acta energiae solaris sinica, 2016, 37(7): 1756-1762.
[4] SCHMID J, DRAPALIK M, KANCSAR E, et al.A study of power quality loss in PV modules caused by wind induced vibration located in Vienna[J]. Solar Energy, 2011, 85(7): 1530-1536.
[5] ASSMUS M, JACK S, WEISS K A, et al.Measurement and simulation of vibrations of PV modules induced by dynamic mechanical loads[J]. Progress in photovoltaics research and applications, 2011, 19(6): 688-694.
[6] LIU Y F, NOGUCHI N, ISHII K.Development of a low-cost IMU by using sensor fusion for attitude angle estimation[J]. IFAC proceedings volumes, 2014, 47(3): 4435-4440.
[7] CHEN X, YU K J, DU W L, et al.Parameters identification of solar cell models using generalized oppositional teaching learning-based optimization[J]. Energy, 2016, 99: 170-180.
[8] PENG L L, SUN Y Z, MENG Z, et al.A new method for determining the characteristics of solar cells[J]. Journal of power sources, 2013, 227: 131-136.
[9] 张兴, 李善寿. 局部遮挡时光伏阵列失配特性建模与分析[J]. 太阳能学报, 2014, 35(9): 1592-1598.
ZHANG X, LI S S.Modeling and analysis of mismatch characteristics of PV array under shading conditions[J]. Acta energiae solaris sinica, 2014, 35(9): 1592-1598.
[10] KITAGAWA S, KATO M, OKUGAWA M, et al.Attitude angle estimation and vibration control of mobile robot with self-righting mechanism[C]//ASME 2015 5th Annual Dynamic Systems & Control Conference Joint with the JSME 2012 11th Motion & Vibration Conference, Florida, USA, 2012.
[11] 陈维, 沈辉, 刘勇. BIPV中光伏阵列朝向和倾角对性能影响理论研究[J]. 太阳能学报, 2009, 30(2): 206-210.
CHEN W, SHEN H, LIU Y.Performance evaluation of PV arrays at different tilt angles and orientations in BIPV[J]. Acta energiae solaris sinica, 2009, 30(2): 206-201.
[12] 彭乐乐, 孙以泽, 林学龙, 等. 工程用太阳电池模型及参数确定法[J]. 太阳能学报,2012, 33(2): 283-286.
PENG L L, SUN Y Z, LIN X L, et al.Engineering model and parameters determination method of photovoltaic cell and array[J]. Acta energiae solaris sinica, 2012, 33(2): 283-286.
[13] ZHANG F, XIE Y X, HU Y S, et al.A hybrid boost-flyback/flyback micro-inverter for photovoltaic applications[J]. IEEE transactions on industrial electronics, 2019, 67(1): 308-318.
[14] 翟婉明. 车辆-轨道耦合动力学[M]. 北京: 科学出版社, 2007: 44-48.
ZHAI W M.Vehicle-railway coupling dynamics[M]. Beijing: China Science Publish House, 2007: 44-48.
[15] PENG L L, SUN Y Z, MENG Z.An improved model and parameters extraction for photovoltaic cells using only three state points at standard test condition[J]. Journal of power sources, 2014, 248(15): 621-631.

基金

国家自然科学基金(51907117; 51975347); 上海市科技计划(22010501600); 上海申通地铁集团资助项目(JS-KY20R013-3)

PDF(2103 KB)

Accesses

Citation

Detail

段落导航
相关文章

/