引入权值修正预测控制的风电叶片自适应组合抑振策略研究

马伟栋, 高丙朋, 杨武帮, 张治国

太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 382-390.

PDF(2769 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2769 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 382-390. DOI: 10.19912/j.0254-0096.tynxb.2021-0053

引入权值修正预测控制的风电叶片自适应组合抑振策略研究

  • 马伟栋, 高丙朋, 杨武帮, 张治国
作者信息 +

RESEARCH ON ADAPTIVE COMBINED VIBRATION SUPPRESSION STRATEGY OF WIND POWER BLADE BASED ON WEIGHT MODIFIED PREDICTIVE CONTROL

  • Ma Weidong, Gao Bingpeng, Yang Wubang, Zhang Zhiguo
Author information +
文章历史 +

摘要

针对大型风电叶片颤振开展主动控制研究,采用柔性尾缘襟翼方式,以NACA0012翼型为研究对象,建立二自由度叶片的颤振控制增广模型。引入拉盖尔函数对模型预测控制(MPC)算法中权值更新策略进行指数修正,在此基础上利用分层结构思想对叶片减振系统划分不同控制层次,设计以振动量最小化为控制目标的自适应组合控制策略。利用仿真平台对标准工况和干扰工况下所提控制策略的控制结果进行分析,结果表明:所提方法可有效抑制气弹耦合作用下的叶片振动,降低抑振能耗,与常规自适应控制方法相比,具备更优的抗干扰性能,可进一步提升复杂运行环境下风电叶片振动控制系统的适应能力。

Abstract

Active control research was carried out on the flutter of large wind power blades, and the flutter control and widening model of two-degree-of-freedom blades was established by using flexible tail flaps and NACA0012 airfoil as the research object. The Laguerre function is introduced to index correct the weight update strategy in the model predictive control (MPC) algorithm, and on this basis, the hierarchical structure idea is used to divide the blade vibration damping system into different control levels, and an adaptive combination control strategy with the vibration minimization as the control goal is designed. The simulation platform is used to analyze the control results of the proposed control strategy under standard working conditions and interference conditions, and the results show that the proposed method can effectively suppress the blade vibration under the coupling action of air-elasticity, reduce the vibration suppression energy consumption, and have better anti-interference performance compared with the conventional adaptive control method, which can further improve the adaptability of the wind power blade vibration control system in complex operating environments.

关键词

风力电机 / 叶片 / 颤振 / 模型预测控制 / 自适应系统

Key words

wind turbines / flutter / model predictive control / adaptive systems

引用本文

导出引用
马伟栋, 高丙朋, 杨武帮, 张治国. 引入权值修正预测控制的风电叶片自适应组合抑振策略研究[J]. 太阳能学报. 2022, 43(8): 382-390 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0053
Ma Weidong, Gao Bingpeng, Yang Wubang, Zhang Zhiguo. RESEARCH ON ADAPTIVE COMBINED VIBRATION SUPPRESSION STRATEGY OF WIND POWER BLADE BASED ON WEIGHT MODIFIED PREDICTIVE CONTROL[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 382-390 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0053
中图分类号: TH161.6    TP273.3   

参考文献

[1] 黎作武, 贺德馨. 风能工程中流体力学问题的研究现状与进展[J]. 力学进展, 2013, 43(5): 472-525.
LI Z W, HE D X.Research status and progress of hydrodynamics in wind energy engineering[J]. Advances in mechanics, 2013, 43(5): 472-525.
[2] 丛聪, 杨冰. 基于调谐质量阻尼器的风力机叶片振动分散控制研究[J]. 太阳能学报, 2019, 40(1): 179-184.
CONG C, YANG B.Research on distributed control of wind turbine blade vibration based on tuned mass damper[J]. Acta energiae solaris sinica, 2019, 40(1): 179-184.
[3] 叶舟, 郝文星, 丁勤卫, 等. 不同工况下风力机翼型襟翼气动特性分析[J]. 太阳能学报, 2017, 38(9): 2535-2543.
YE Z, HAO W X, DING Q W, et al.Analysis of aerodynamic characteristics of wind turbine airfoil flaps under different working conditions[J]. Acta energiae solaris sinica, 2017, 38(9): 2535-2543.
[4] 余畏. 基于柔性尾缘襟翼的大型风力机叶片载荷智能控制研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2013.
YU W.Research on intelligent control of large wind turbine blade load based on flexible trailing edge flap[D]. Beijing: Graduate School of the Chinese Academy of Sciences (Institute of Engineering Thermophysics), 2013.
[5] 张文广, 白雪剑. 智能叶片风力机建模及多目标尾缘襟翼控制[J]. 动力工程学报, 2018, 38(4): 321-328.
ZHANG W G, BAI X J.Intelligent blade wind turbine modeling and multi-objective trailing edge flap control[J]. Journal of Chinese Society of Power Engineering, 2018, 38(4): 321-328.
[6] AIRIMITOAIE T B, LANDAU I D.Robust and adaptive active vibration control using an inertial actuator[J]. IEEE transactions on industrial electronics, 2016, 63(10): 6482-6489.
[7] ZHANG Z, HU F, WANG J.On saturation suppression in adaptive vibration control[J]. Journal of sound and vibration, 2010, 329(9): 1209-1214.
[8] PENG F, NG A, HU Y R.Actuator placement optimization and adaptive vibration control of plate smart structures[J]. Journal of intelligent material systems and structures, 2005, 16(3): 263-271.
[9] 张文广, 王媛媛, 刘瑞杰, 等. 风力机智能叶片颤振建模及主动控制仿真[J]. 动力工程学报, 2019, 39(9): 758-764, 776.
ZHANG W G, WANG Y Y, LIU R J, et al.Flutter modeling and active control simulation of wind turbine blade[J]. Journal of Chinese Society of Power Engineering, 2019, 39(9): 758-764, 776.
[10] 刘廷瑞, 常林. 基于偏移量控制的MPC算法在预扭叶片振动控制中的应用[J]. 振动与冲击, 2019, 38(13): 172-178.
LIU T R, CHANG L.Application of mpc algorithm based on offset control in vibration control of pre-twisted blade[J]. Journal of vibration and shock, 2019, 38(13): 172-178.
[11] STAINO A, BASU B.A robust controller with active tendons for vibration mitigation in wind turbine rotor blades[C]//Proceedings of the International Symposium on Engineering under Uncertainty: Safety Assessment and Management(ISEUSAM-2012), Springer, India, 2013: 455-476.
[12] CASTAIGNET D, COUCHMAN I, POULSEN N K, et al.Frequency-weighted model predictive control of trailing edge flaps on a wind turbine blade[J]. IEEE transactions on control systems technology, 2013, 21(4): 1105-1116.
[13] BARLAS T K, KUIK G A M V. Review of state of the art in smart rotor control research for wind turbines[J]. Progress in aerospace sciences, 2010, 46(1): 1-27.
[14] 徐燕, 李迺璐, 陈浩, 等. 基于极点配置控制的风机叶片颤振控制研究[J]. 测控技术, 2017, 36(1): 51-54, 58.
XU Y, LI N L, CHEN H, et al.Research on flutter control of fan blade based on pole placement control[J]. Measurement & control technology, 2017, 36(1): 51-54, 58.
[15] FUNG Y C.An introduction to the theory of aeroelasticity[M]//, New York: Wiley, 1955.
[16] GAO Q, CAI X, GUO X W, et al.Parameter sensitivities analysis for classical flutter speed of a horizontal axis wind turbine blade[J]. Journal of Central South University, 2018, 25(7): 1746-1754.
[17] 邹涛, 丁宝仓. 模型预测控制工程应用导论[M]. 北京: 化学工业出版社, 2010: 130-132.
ZOU T, DING B C.Introduction to model predictive control engineering application[M]. Beijing: Chemical Industry Press, 2010: 130-132.
[18] 陈宁, 王磊, 彭俊洁, 等. 基于模糊认知网络的改进非线性hebbian算法[J]. 控制理论与应用, 2016, 33(10): 1273-1280.
CHEN N, WANG L, PENG J J, et al.Improved nonlinear hebbian algorithm based on fuzzy cognitive network[J]. Control theory & applications, 2016, 33(10): 1273-1280.
[19] WANG L.Discrete model predictive controller design using laguerre functions[J]. Journal of process control, 2004, 14(2): 131-142.
[20] 曾志文, 卢惠民, 张辉, 等. 基于模型预测控制的移动机器人轨迹跟踪[J]. 控制工程, 2011, 18(S1): 80-85.
ZENG Z W, LU H M, ZHANG H, et al.Trajectory tracking of mobile robot based on model predictive control[J]. Control engineering of China, 2011, 18(S1): 80-85.
[21] 宁昕, 武耀发. 自由漂浮空间机器人轨迹跟踪的模型预测控制[J]. 控制理论与应用, 2019, 36(5): 687-696.
NING X, WU Y F.Model predictive control for trajectory tracking of free-floating space robot[J]. Control theory & applications, 2019, 36(5): 687-696.
[22] 文生平, 江静. 料筒温度RBF神经网络PID控制器设计及仿真[J]. 控制工程, 2007, 12(4): 369-372.
WEN S P, JIANG J.Design and simulation of barrel temperature RBF neural network PID controller[J]. Control engineering of China, 2007, 12(4): 369-372.
[23] 席裕庚, 李德伟, 林姝. 模型预测控制——现状与挑战[J]. 自动化学报, 2013, 39(3): 222-236.
XI Y G, LI D W, LIN S.Model predictive control——current situation and challenges[J]. Acta automatica sinica, 2013, 39(3): 222-236.
[24] JONKMAN B J, BUHL M L Jr. Turbsim user's guide(V1.06.00). National Renewable Energy Laboratory, September-2012, NWTC information portal(turbsim)[R]. Technical Report NREL/TP-500-39797, 2006.

基金

国家自然科学基金(51667020)

PDF(2769 KB)

Accesses

Citation

Detail

段落导航
相关文章

/