基于风电机组状态的超短期海上风电功率预测

黄玲玲, 李锁, 符杨, 王振帅

太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 391-398.

PDF(1817 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1817 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (8) : 391-398. DOI: 10.19912/j.0254-0096.tynxb.2021-0054

基于风电机组状态的超短期海上风电功率预测

  • 黄玲玲, 李锁, 符杨, 王振帅
作者信息 +

ULTRA-SHORT TERM OFFSHORE WIND POWER PREDICTION BASED ON CONDITION-ASSESSMENT OFWIND TURBINES

  • Huang Lingling, Li Suo, Fu Yang, Wang Zhenshuai
Author information +
文章历史 +

摘要

提出一种基于风电机组状态的超短期海上风电功率预测模型。首先,综合考虑海上环境因素以及风电机组部件间的相互作用建立指标的预测模型,以长短期记忆神经网络的预测误差作为监测指标的动态劣化度;然后采用模糊综合评价法对风电机组的运行状态进行评估,依据评估结果对风电机组历史运行数据进行划分;最后根据分类后历史运行数据建立基于机组状态的超短期风电功率预测模型。结合国内某海上风电场实例数据进行分析,算例结果表明所提方法可有效提高风电功率预测精度。

Abstract

In this paper, an ultra-short term offshore wind power prediction model based on condition-assessment of wind turbines is proposed. Firstly, considering the influences of marine environmental factors and complex correlations between the various components of the wind turbines, an index prediction model based on the dynamic deterioration is proposed. The dynamic deterioration obtained by the relative errors of Long Short-term Memory (LSTM) . Then, the fuzzy comprehensive evaluation method is introduced to evaluate the operation conditions of wind turbines, according to which the historical operation data of the wind turbine are then categorized . Finally,an ultra-short term power prediction model is established. A case with the data from a domestic offshore wind farm is disscussed to illustrate the effectiveness and the prediction accuracy of the proposed methodology.

关键词

海上风电机组 / 长短期记忆神经网络 / 风电功率 / 预测模型 / 状态评估

Key words

offshore wind turbines / long short-term memory / wind power / prediction model / condition assessment

引用本文

导出引用
黄玲玲, 李锁, 符杨, 王振帅. 基于风电机组状态的超短期海上风电功率预测[J]. 太阳能学报. 2022, 43(8): 391-398 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0054
Huang Lingling, Li Suo, Fu Yang, Wang Zhenshuai. ULTRA-SHORT TERM OFFSHORE WIND POWER PREDICTION BASED ON CONDITION-ASSESSMENT OFWIND TURBINES[J]. Acta Energiae Solaris Sinica. 2022, 43(8): 391-398 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0054
中图分类号: TM614   

参考文献

[1] ZHAO X, CAI Q, ZHANG S, et al.The substitution of wind power for coal-fired power to realize China's CO2 emissions reduction targets in 2020 and 2030[J]. Energy, 2017, 120(1): 164-178.
[2] 张丽英, 叶廷路, 辛耀中, 等. 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报, 2010, 30(25): 1-9.
ZHANG L Y, YE T L, XIN Y Z, et al.Problems and measures of power grid accommodating large scale wind power[J]. Proceedings of the CSEE, 2010, 30(25): 1-9.
[3] 彭小圣, 熊磊, 文劲宇, 等. 风电集群短期及超短期功率预测精度改进方法综述[J]. 中国电机工程学报, 2016, 36(23): 6315-6326.
PENG X S, XIONG L, WEN J Y, et al.A summary of the state of the art for short-term and ultra-short-term wind power prediction of regions[J]. Proceedings of the CSEE, 2016, 36(23): 6315-6326.
[4] 丁明, 张超, 王勃, 等. 基于功率波动过程的风电功率短期预测及误差修正[J]. 电力系统自动化, 2019, 43(3): 2-12.
DING M, ZHANG C, WANG B, et al.Short-term forecasting and error correction of wind power based on power fluctuation process[J]. Automation of electric power system, 2019, 43(3): 2-12.
[5] 熊音笛, 刘开培, 秦亮, 等. 基于时序数据动态天气划分的短期风电功率预测方法[J]. 电网技术, 2019, 43(9): 3353-3359.
XIONG Y D, LIU K P, QING L, et al.Short-term wind power prediction method based on dynamic wind power weather division of time sequence data[J]. Power system technology, 2019, 43(9): 3353-3359.
[6] 符杨, 郑紫宸, 时帅, 等. 考虑气象相似性与数值天气预报修正的海上风功率预测[J]. 电网技术, 2019, 43(4): 1253-1260.
FU Y, DENG Z C, SHI S, et al.Offshore wind power forecasting considering meteorological similarity and NWP correction[J]. Power system technology, 2019, 43(4): 1253-1260.
[7] KAVASSERI R G, SEETHARAMAN K.Day-ahead wind speed forecasting using f-ARIMA models[J]. Renewable energy, 2009, 34(5): 1388-1393.
[8] WANG Y, GUO Y K.Forecasting method of stock market volatility in time series data based on mixed model of ARIMA and XGBoost[J]. China communications, 2020, 17(3): 205-221.
[9] WANG Z, LOU Y.Hydrological time series forecast model based on wavelet de-noising and ARIMA-LSTM[C]//2019 IEEE 3rd ITNEC, Publisher: IEEE, Chengdu, China, 2019: 1697-1701.
[10] HIPPERT H S, PEDREIRA C E, SOUZA R C.Combining neural networks and ARIMA models for hourly temperature forecast, Proceedings of the IEEE-INNS-ENNS IJCNN 2000[C]//IEEE: Como, Italy, 2000.
[11] ZHANG C, WEI H K, ZHAO J S, et al.Short-term wind speed forecasting using empirical mode decomposition and feature selection[J]. Renewable energy, 2016, 96: 727-737.
[12] 姜贵敏, 陈志军, 李笑竹, 等. 基于EEMD- ACS- LSSVM的短期风电功率预测[J].太阳能学报, 2020, 41(5): 77-84.
JIANG G M, CHEGN Z J, LI X Z, et al.Short-term prediction of wind power based on EEMD-ACS-LSSVM[J] Acta energiae solaris sinica, 2020, 41(5): 77-84.
[13] 朱乔木, 李弘毅, 王子琪, 等. 基于长短期记忆网络的风电场发电功率超短期预测[J]. 电网技术, 2017, 41(12): 3797-3802.
ZHU Q M, LI H Y, WANG Z Q, et al.Short-term wind power forecasting based on LSTM[J]. Power system technology, 2017, 41(12): 3797-3802.
[14] LIU H, MI X W, LI Y F.Smart deep learning based wind speed prediction model using wavelet packet decomposition, convolutional neural network and convolutional long short term memory network[J]. Energy conversion and management, 2018, 166: 120-131.
[15] 黄慧, 贾嵘, 董开松. 基于时空相关性的NAR动态神经网络风功率超短期组合预测[J]. 太阳能学报, 2020, 41(10): 311-316.
HUANG H, JIA R, DONG K S.Ultra short-term combined forecasting of wind power with nar neural network based on spatio-temporal correlation[J]. Acta energiae solaris sinica, 2020, 41(10): 311-316.
[16] HU J M, WANG J Z, MA K.A hybrid technique for short-term wind speed prediction[J]. Energy, 2015, 81: 563-574.
[17] 简献忠, 顾洪志, 王如志. 一种基于双通道CNN和LSTM的短期光伏功率预测方法[J]. 电力科学与工程, 2019, 35(5): 7-11.
JIAN X Z, GU H Z, WANG R Z.A short-term photovoltaic power prediction method based on dual-channel CNN and LSTM[J]. Electric power science and engineering, 2019, 35(5): 7-11.
[18] GILL S, STEPHEN B, GALLOWAY S.Wind turbine condition assessment through power curve copula modeling[J]. IEEE transaction on sustainable energy, 2012, 3(1): 94-101.
[19] 李辉, 胡姚刚, 唐显虎, 等. 并网风电机组在线运行状态评估方法[J]. 中国电机工程学报, 2010, 30(33): 103-109.
LI H, HU Y G, TANG X H, et al.Method for on-line operating conditions assessment for a grid-connected wind turbine generator system[J]. Proceedings of the CSEE, 2010, 30(33): 103-109.
[20] 肖运启, 王昆朋, 贺贯举, 等. 基于趋势预测的大型风电机组运行状态模糊综合评价[J]. 中国电机工程学报, 2014, 34(13): 2132-2139.
XIAO Y Q, WANG K P, HE G J, et al.Fuzzy comprehensive evaluation for operating condition of large-scale wind turbines based on trend predication[J]. Proceedings of the CSEE, 2014, 34(13): 2132-2139.
[21] 杨茂, 周宜. 计及风电场状态的风电功率超短期预测[J]. 中国电机工程学报, 2019, 39(5): 1259-1268.
YANG M, ZHOU Y.Ultra-short-term prediction of wind power considering wind farm status[J]. Proceedings of the CSEE, 2019, 39(5): 1259-1268.
[22] 张鑫淼. 基于SCADA数据的风电机组性能分析及健康状态评估[D]. 北京: 华北电力大学, 2017.
ZHANG X M.Performance analysis and health status evaluation of wind turbines based on SCADA data[D]. Beijing: North China Electric Power University, 2017.
[23] 黄必清, 何焱, 王婷艳. 基于模糊综合评价的海上直驱风电机组运行状态评估[J]. 清华大学学报(自然科学版), 2015, 55(5): 543-549.
HUANG B Q, HE Y, WANG T Y.Fuzzy synthetic evaluation of the operational status of offshore direct-drive wind turbines[J]. Journal of Tsinghua University(science and technology), 2015, 55(5): 543-549.

基金

国家电网公司总部科技项目(52090R180006)

PDF(1817 KB)

Accesses

Citation

Detail

段落导航
相关文章

/