针对大开口和更高运行温度的槽式太阳能热发电系统,提出一种可实现高聚光比、低辐射热损及能流密度均匀的新型槽式太阳集热器,即在集热管内放置外壁具有太阳选择吸收膜层和内壁具有反射膜层二次聚光器的大开口槽式太阳集热器。建立圆弧为微元段的自适应设计新方法,提出3种典型的二次聚光器面型,利用蒙特卡洛光线追迹方法仿真新型集热器的能流密度分布特性,验证该光学仿真方法,分析影响集热器光学性能的各种因素。结果表明,该集热器可显著提升集热效率。
Abstract
For the large aperture and higher operating temperature of the parabolic trough solar power generation system, this paper presents a novel parabolic trough collector, which could gain higher concentrating ratio, lower heat loss and better uniformity of energy flux density. Inside the receiver, a secondary concentrator is placed with a solar selective coating on the outer surface and a reflective coating on the inner surface. With arc as the element segment, three surface types of secondary concentrator were proposed by using a novel adaptive design method. After verified the optical simulation method, the energy flux density distribution of the novel collector were simulated by using Monte Carlo ray tracing method. Various factors' effects on the optical performance of the secondary concentrator were analyzed. It is concluded that the novel collector improves the collector efficiency.
关键词
槽式太阳集热器 /
二次聚光器 /
光学性能 /
能流
Key words
parabolic trough solar collector /
secondary concentrator /
optical performance /
energy flux
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王慧富, 吴玉庭, 张晓明, 等. 熔盐槽式太阳能热发电站集热系统性能研究[J]. 太阳能学报, 2020, 41(6): 317-325.
WANG H F, WU Y T, ZHANG X M, et al.Study on the performance of the heat collecting system of molten salt trough solar thermal power station[J]. Acta energiae solaris sinica, 2020, 41(6): 317-325.
[2] 张维蔚, 巴旭阳, 薛奇成, 等. 基于能量分析的槽式太阳能集热系统优化研究[J]. 太阳能学报, 2019, 40(8): 2251-2257.
ZHANG W W, BA X Y, XUE Q C, et al.Study on optimization of trough solar heat collecting system based on energy analysis and analysis[J]. Acta energiae solaris sinica, 2019, 40(8): 2251-2257.
[3] GONG J H, WANG J, LUND P D, et al.Improving the performance of a 2-stage large aperture parabolic trough solar concentrator using a secondary reflector designed by adaptive method[J]. Renewable energy, 2020, 6: 23-33.
[4] MANIKANDANA G K, INIYANB S, GOICC R.Enhancing the optical and thermal efficiency of a parabolic trough collector-a review[J]. Applied energy, 2019, 235: 1524-1540.
[5] MAATALLAH T, AMMAR R.Design, modeling, and optimation of a dual reflector parabolic trough concentration system[J]. International journal of energy research, 2020, 44: 3711-3723.
[6] ZHU G D.New adaptive method to optimize the secondary reflector of linear Fresnel collectors[J]. Solar energy, 2017, 144: 117-126.
[7] GRENA R.Efficiency gain of a solar trough collector due to an IR-reflective film on the non-irradiated part of the receiver[J]. International journal of green energy, 2011, 8: 715-733.
[8] WANG Q L, YANG H L, ZHONG S, et al.Comprehensive experimental testing and analysis on parabolic trough solar receiver integrated with radiation shield[J]. Applied energy, 2020, 268: 115004.
[9] 高鑫磊, 由世俊, 张欢, 等. 槽式太阳能新型腔式吸热器模拟和应用研究[J]. 太阳能学报, 2019, 40(10): 2289-2904.
GAO X L, YOU S J, ZHANG H, et al.Simulation and application of a new type of cavity solar energy absorber[J]. Acta energiae solaris sinica, 2019, 40(10): 2289-2904.
[10] WANG Q L, LI J, YANG H L, et al.Performance analysis on a high-temperature solar evacuated absorber tube with an inner radiation shield[J]. Energy, 2017, 139: 447-458.
[11] LEI D Q, FE X, REN Y C, et al.Temperature and thermal stress analysis of parabolic trough receivers[J]. Renewable energy, 2019, 136: 403-413.
[12] JETER S M.Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation[J]. Solar energy, 1986, 37(5): 335-345.
[13] MEN W, JULES P, ANDREA H, et al.Potential improvements in the optical and thermal efficiencies of parabolic trough concentrators[J]. Solar energy, 2014, 107: 398-414.
基金
国家重点研发计划(2019YFE0102000); 国家自然科学基金(51476165)