介绍中国自主发展的自航气动式振荡水柱波浪能发电船技术。发电船由一个船型浮力舱、一个水平管、一个垂直管、空气透平和发电机组成。在长1.2 m、宽0.51 m的模型进行水槽实验,结果表明在规则波下俘获宽度比最高可达104.07%,在随机波下最高俘获宽度比为82.4%。基于该模型按相似原则设计多种型号的发电船,其中一艘样机装机功率1 kW,主体长5.2 m、宽2.3 m,质量4.5 t,在深圳大亚湾海域进行试验,可实现装置的波浪发电和航行。
Abstract
The wave power ship is composed of a ship-type floating room, a horizontal tube, a vertical tube, an air turbine and a generator. The flume test results of a model 1.2 meters long, 0.51 meters wide show that the peak of capture width ratio is 104.07% under regular waves, 82.4% under random waves. Based on the results of the model, several types of power generating ships were designed according to the principle of similarity. A prototype developed with installed power of 1 kW, main body length of 5.2 m, width of 2.3 m and weight of 4.5 t had been tested in the sea of Daya Bay, Shenzhen, realizing sailing and power generating of the wave power ship.
关键词
波浪能 /
振荡水柱 /
俘获宽度比 /
波浪能发电船
Key words
wave energy /
oscillating water column /
capture width ratio /
wave power ship
中图分类号:
TK212.+3
TV139.2+5
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BABARIT A.A database of capture width ratio of wave energy converters[J]. Renewable energy, 2015, 80: 610-628.
[2] 熊玮, 谷汉斌, 刘海源, 等. 波浪能发电技术在船舶上的应用[J]. 水运管理, 2018, 40(3): 30-33.
XIONG W, GU H B, LIU H Y, et al.Application of wave power generation technology in ship[J]. Shipping management, 2018, 40(3): 30-33.
[3] FALCÃO A F. Wave energy utilization: a review of the technologies[J]. Renewable and sustainable energy reviews, 2010, 14: 899-918.
[4] HEATH T V.A review of oscillating water columns[J]. Philosophical transactions of the Royal Society A: mathematical, physical and engineering sciences, 2012, 370(1959): 235-245.
[5] 梁贤光, 王伟, 蒋念东, 等. 5 kW后弯管波力发电浮标模型性能的试验研究[J]. 新能源, 1995, 17(6): 5-10.
LIANG X G, WANG W, JIANG N D, et al.An experimental research on performance of the 5 kW BBDB model[J]. New energy, 1995, 17(6): 5-10.
[6] 粱贤光, 王伟, 杜斌, 等. 后弯管波力发电浮标模型性能试验研究[J]. 海洋工程, 1997, 15(3): 77-86.
LIANG X G, WANG W, DU B, et al.Experimental research on performance of BBDB wave-activated generation device model[J]. The ocean engineering, 1997, 15(3): 77-86.
[7] 梁贤光, 孙培亚, 王伟, 等. 后弯管波力发电浮体模型试验研究[J]. 新能源, 2000, 22(2): 10-15.
LIANG X G, SUN P Y, WANG W, et al.The experimental study of BBDB generating body model[J]. New energy, 2000, 22(2): 10-15.
[8] IMAI Y, TOYOTA K, NAGATA S, et al.Duct extension effect on the primary conversion of a wave energy converter "backward bent duct buoy"[EB/OL]. http://www.ioes.saga-u.ac.jp/archive/15-6.pdf.
[9] 梁贤光, 王伟, 杜彬, 等. 后弯管波力发电浮标模型性能试验研究[J]. 海洋工程, 1997, 15(3): 78-87.
LIANG X G, WANG W, DU B, et al.Experimental research on performance of BBDB wave-activated generation device model[J]. The ocean engineering, 1997, 15(3): 78-87.
[10] LI M, WU B J, JIANG C Y, et al.Effect of reciprocating and unidirectional airflow on primary conversion of a pentagonal Backward Bent Duct Buoy[J]. Applied ocean research, 2019, 89: 85-95.
[11] LI M, WU R K, WU B J, et al.Experimental study on conversion efficiency of a floating OWC pentagonal backward bent duct buoy wave energy converter[J]. China ocean engineering, 2019, 33(3): 297-308.
[12] PATHAK A G, SUBRAMANIAN V A, MASUDA Y.Performance studies on a scaled model of backward bent ducted buoy (BBDB) type wave energy converter in regular and random waves[C]//The Ninth International Offshore and Polar Engineering Conference, Brest, France, 1999.
基金
国家自然科学基金(51879253; U20A20106); 广东省自然科学基金(2018A030313962)