南海岛礁海域波浪能资源分析及总量评估

武贺, 方舣洲, 张松, 马勇

太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 416-423.

PDF(3219 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3219 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 416-423. DOI: 10.19912/j.0254-0096.tynxb.2021-0060

南海岛礁海域波浪能资源分析及总量评估

  • 武贺1, 方舣洲1, 张松1, 马勇2
作者信息 +

WAVE ENERGY CHARACTERIZATION AND POTENTIAL ESTIMATION FOR ISLANDS OF SOUTH CHINA SEA

  • Wu He1, Fang Yizhou1, Zhang Song1, Ma Yong2
Author information +
文章历史 +

摘要

基于波浪能的能通量原理,建立代表区段长度的概念,提出针对于海岛海域的波浪能资源蕴藏量评估方法及具体公式。通过第3代波浪谱模型SWAN对南海海域近10年的波浪场进行数值模拟,并利用实测波浪资料进行验证。在此基础上重点刻画该海域波高、周期、能流密度等波浪能资源时空分布特征,利用新方法对南海岛礁海域波浪能资源蕴藏量进行估算。结果表明,以离岸50 km等值线为波浪能量输入线时,南海群岛波浪能理论蕴藏量约为18300 MW。其中,西沙群岛海域约为2600 MW,东沙群岛海域为2120 MW,中沙群岛海域约为6720 MW,南沙群岛海域约为6860 MW。

Abstract

Based on the principles of energy flux, the concept of representative section and preferred method for assessment of wave energy resources of islands potential has been proposed for the first time. The third-generation wave spectrum model SWAN is used to numerically simulate the wave field in the South China Sea over the past 10 years and validated against observations. On this basis, the spatial and temporal distribution characteristics of wave energy resources, such as wave height, period and power density, were characterized. And a new method was used to estimate the wave energy resource reserves in the South China Sea. The results show that the theoretical wave energy reserves of the South China Sea Islands are about 18300 MW when the 50 km offshore contour is used as the wave energy input line, of which about 2600 MW are in the Xisha Islands, 2120 MW in the Dongsha Islands, 6720 MW in the Zhongsha Islands and 6860 MW in the Nansha Islands.

关键词

可再生能源 / 波浪能 / 资源评估 / 南海海域 / 数值模拟

Key words

renewable energy resource / wave power / resource assessment / South China Sea / numerical modelling

引用本文

导出引用
武贺, 方舣洲, 张松, 马勇. 南海岛礁海域波浪能资源分析及总量评估[J]. 太阳能学报. 2022, 43(9): 416-423 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0060
Wu He, Fang Yizhou, Zhang Song, Ma Yong. WAVE ENERGY CHARACTERIZATION AND POTENTIAL ESTIMATION FOR ISLANDS OF SOUTH CHINA SEA[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 416-423 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0060
中图分类号: P743.2   

参考文献

[1] CRUZ J.Ocean wave energy[M]. Springer, 2008.
[2] FALCAO A F O. Wave energy utilization: a review of the technologies[J]. Enewable and sustainable energy reviews, 2010, 14: 899-918.
[3] KADIRI M.A review of the potential water quality impacts of tidal renewable energy systems[J]. Renewable and sustainable energy reviews, 2012, 16: 329-341.
[4] 王传崑. 我国沿岸波浪能资源状况的初步分析[J]. 海洋学研究, 1984(2): 36-42.
WANG C K.Primary analysis of coastal wave energy source off China[J]. Eastern oceanography, 1984(2): 36-42.
[5] 张松, 刘富铀, 张滨, 等. 我国近海波浪能资源调查与评估[J]. 海洋技术学报, 2012, 31(3): 79-81.
ZHANG S, LIU F Y, ZHANG B, et al.Investigation and assessment of wave energy in coastal area of China[J]. Journal of ocean technology, 2012, 31(3): 79-81.
[6] 罗续业, 夏登文. 中国海洋能近海重点区资源评估与特性分析[M]. 北京: 海洋出版社, 2017.
LUO X Y, XIA D W.Characterization and assessment of ocean energy for priority region in China[M]. Beijing: China Ocean Press, 2017.
[7] 李泽文, 周强, 杨永增. 基于LAGFD-WAM海浪数值模式的海南万宁近海波浪能资源评估[J]. 海洋预报, 2014, 31(5): 13-19.
LI Z W, ZHOU Q, YANG Y Z.Assessment of nearshore wave energy resource of wanning, Hainan Province by using LAGFD-WAM wave model[J]. Marine forecasts, 2014, 31(5): 13-19.
[8] SWAN. SWAN scientific and technical documentation[R].41. 20, 2019.
[9] 江兴杰, 杨永增, 王道龙, 等. 浅水环境下波浪能能流密度计算方法研究[J]. 海洋学报, 2015, 37(9): 1-9.
JIANG X J, YANG Y Z, WANG D L, et al.Study of wave power density in finite depth[J]. Acta oceanologica sinica, 2015, 37(9): 1-9.
[10] 郑崇伟, 林刚, 孙岩, 等. 近22年南海波浪能资源模拟研究[J]. 热带海洋学报, 2012, 31(6): 16-22.
ZHENG C W, LIN G, SUN Y, et al.Simulation of wave energy resources in the South China Sea during the past 22 years[J]. Journal of tropical oceanography, 2012, 31(6): 16-22.
[11] 孙湘平. 中国近海区域海洋[M]. 北京: 海洋出版社, 2008.
SUN X P.Regional ocean of China[M]. Beijing: China Ocean Press, 2008.
[12] 郑崇伟, 李训强, 潘静. 近45年南海-北印度洋波浪能资源评估[J]. 海洋科学, 2012, 36(6): 101-104.
ZHENG C W, LI X Q, PAN J.Wave energy analysis of the South China Sea and the North Indian Ocean in recent 45 years[J]. Marine sciences, 2012, 36(6): 101-104.
[13] 郑崇伟, 郑宇艳, 陈洪春. 基于SWAN模式的近10年南海北部波浪能资源研究[J]. 亚热带资源与环境学报, 2011, 6(2): 54-59.
ZHENG C W, ZHENG Y Y, CHEN H C.Research on wave energy resources in the Northern South China Sea during recent 10 years using swan wave model[J]. Journal of subtropical resources and environment, 2011, 6(2): 54-59.
[14] 郑崇伟, 周林. 近10年南海波候特征分析及波浪能研究[J]. 太阳能学报, 2012, 33(8): 1349-1356.
ZHENG C W, ZHOU L.Wave climate and wave energy analysis of the South China Sea in recent 10 years[J]. Acta energiae solaris sinica, 2012, 33(8): 1349-1356.
[15] 宗芳伊, 吴克俭. 基于近20年的SWAN模式海浪模拟结果的南海波浪能分布、变化研究[J]. 海洋湖沼通报, 2014(3): 1-12.
ZONG F Y, WU K J.Research on distributions and variations of wave energy in South China Sea based on recent 20 years' wave simulation results using swan wave model[J]. Transactions of oceanology and limnology, 2014(3): 1-12.
[16] RICCIARDULLI L. CCMP: cross-calibrated multi-platform wind vector analysis[EB/OL]. https://climatedataguide.ucar.edu/climate-data/ccmp-cross-calibrated-multi-platform-wind-vector-analysis.1987/07.

基金

国家重点研发计划(2019YFE0102500; 2019YFB1504401; 2016YFC1401800)

PDF(3219 KB)

Accesses

Citation

Detail

段落导航
相关文章

/