生物质成型机成型模孔内表面摩擦力分形预测

德雪红, 杨洋, 金敏, 李南丁, 郭文斌, 李震

太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 369-375.

PDF(1649 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1649 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 369-375. DOI: 10.19912/j.0254-0096.tynxb.2021-0067

生物质成型机成型模孔内表面摩擦力分形预测

  • 德雪红1, 杨洋1, 金敏1, 李南丁1, 郭文斌1, 李震2
作者信息 +

FRACTAL PREDICTION OF FRICTIONAL FORCE AGAINST INTERIOR SURFACE OF FORMING CHANNEL IN BIOMASS RING DIE PELLET MACHINE

  • De Xuehong1, Yang Yang1, Jin Min1, Li Nanding1, Guo Wenbin1, Li Zhen2
Author information +
文章历史 +

摘要

选择2种模孔材料,利用粗糙仪测出其表面形貌,提取轮廓数据,采用尺码法计算出表面分形参数D和G,再基于经典接触公式和M-B分形接触模型建立成型模孔内表面滑动摩擦力分形预测模型并进行模拟,最后利用摩擦磨损试验台进行验证。结果表明:当环模模孔内表面的粗糙度Ra值3.428 μm时(45钢),D值为1.373,G值为1.55×10-6 m;而当其Ra值为4.002 μm时(40Cr),D值为1.359,G值为0.82×10-6 m;摩擦力随真实接触面积的增加呈增大趋势,单位摩擦力随真实接触面积的增加呈减小趋势;在Ar<Arc时,摩擦力增大速度较快,单位摩擦力减小速度较快;在Ar>Arc时,摩擦力增幅较平缓,单位摩擦力降幅较平缓。经实验验证,摩擦力模拟结果比试验结果略高,且随真实接触面积的增大,摩擦力的模拟值正逐渐接近实验值,模型预测较准确。

Abstract

In this study, two samples of ring die forming channel were used to measure and obtain data of their surface morphology with roughness meter, and then the fractal dimension D and fractal feature G were calculated using Yardstick method, and lastly a fractal prediction model of sliding frictional force against the interior surface of forming channel was built based on classical contact mechanics and M-B fractal model. Numerical simulation as well as friction-wear test was conducted to verify the accuracy of the model. The result showed that: When interior surface roughness Ra of forming channel is 3.428 μm (45#),D is 1.373 and G is 1.55×10-6 m. When Ra is 4.002 μm (40Cr), D is 1.359 and G is 0.82×10-6 m. Along with the increasing Ar, F increased while FD decreased. When r<Arc, the slope of F was larger, which means the frictional force increased more rapidly, and the larger slope of FD represents rapidly decreasing unit frictional force. When Ar>Arc, F became smaller, which means the increase of frictional force became slower, and the smaller slope of FD represents slower decrease of unit frictional force. The experiment data verified that the simulation value is larger than the test value, with the increase of true contact area, the simulation value of frictional force F approximates test value, therefore an overall good simulation result could be achieved by the fractal prediction model of frictional force.

关键词

生物质制粒 / 摩檫力 / 预测 / 分形理论 / 成型模孔

Key words

biomass pelleting / frictional force / prediction / fractal / forming channel

引用本文

导出引用
德雪红, 杨洋, 金敏, 李南丁, 郭文斌, 李震. 生物质成型机成型模孔内表面摩擦力分形预测[J]. 太阳能学报. 2022, 43(9): 369-375 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0067
De Xuehong, Yang Yang, Jin Min, Li Nanding, Guo Wenbin, Li Zhen. FRACTAL PREDICTION OF FRICTIONAL FORCE AGAINST INTERIOR SURFACE OF FORMING CHANNEL IN BIOMASS RING DIE PELLET MACHINE[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 369-375 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0067
中图分类号: TK6    TB17    S216.2   

参考文献

[1] STOCKER T F, DAHE Q, PLATTNER G K. Climate change2013: the physical science basis[R]. IPCC, Task 5, 2013.
[2] UN Environment. Emissions gap report2018[R]. UNEP,Task 9, 2018.
[3] FATIH B. World energy outlook2018[R]. OECD_IEA, Task 8, 2018.
[4] US Department of Energy. Environmental impact assessment: international energy outlook2019[R]. EIA, Task 11, 2019.
[5] PALTSEV S, SOKOLOV A, GAO X, et al.Meeting the goals of the paris agreement:temperature implications of the shell sky scenario[R]. Joint Program Report Seriesn, Task 330, 2018.
[6] GIELEN D. Global energy transformation:a roadmap to2050 (2019 edition)[R]. IRENA, Task 2, 2019.
[7] JONGDEEPAISAL C, NASU S.Hybrid input-output analysis to evaluate economic impacts of biomass energy[J]. International journal of green energy, 2020, 17(14): 937-945.
[8] SHAHABUDDIN M, ALAM T, KRISHNA B B, et al.A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes[J]. Bioresource technology, 2020, 312, DOI:10.1016/j.biortech.2020.123596.
[9] PIOTR B, ANETA B B, ELZBIETA J S, 等. 欧盟可再生能源市场和生物燃料的发展[J]. 中国沼气, 2019, 37(6): 84-87.
PIOTR B, ANETA B B, ELZBIETA J S, et al.Development of renewable energy sources market and biofuels in EU[J]. China biogas, 2019, 37(6): 84-87.
[10] 丛宏斌, 赵立欣, 姚宗路, 等. 生物质环模制粒机产能与能耗分析[J]. 农业机械学报, 2013, 44(11): 144-149.
CONG H B, ZHAO L X, YAO Z L, et al.Analysis on capacity and energy consumption of biomass circular mould granulator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(11): 144-149.
[11] 宁廷州, 马阿娟, 俞洋, 等. 生物质环模颗粒成型存在的问题及对策分析[J]. 中国农机化学报, 2016, 37(1): 272-276.
NING T Z, MA A J, YU Y, et al.Problems and countermeasure analysis on biomass ring die pellet formation[J]. Journal of Chinese agricultural mechanization, 2016, 37(1): 272-276.
[12] 霍丽丽, 赵立欣, 郝彦辉, 等. 国内外生物质成型燃料质量标准现状[J]. 农业工程学报, 2020, 36(9): 245-254.
HUO L L, ZHAO L X, HAO Y H, et al.Quality standard system of densified biomass fuels at home and abroad[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 245-254.
[13] 陈忠加, 俞国胜, 王青宇, 等. 柱塞式平模生物质成型机设计与试验[J]. 农业工程学报, 2015, 31(19): 31-38.
CHEN Z J, YU G S, WANG Q Y, et al.Design and experiment of flat die pellet mill with plunger[J]. Transactions of the CSAE, 2015, 31(19): 31-38.
[14] 闫文刚. 生物质常温开模致密成型研究[D]. 北京: 北京林业大学, 2011.
YAN W G.Research of biomass shaping with open mold in natural temperature[D]. Beijing: Beijing Forestry University, 2011.
[15] 陈金林, 丁雪兴, 张伟政, 等. 干气密封动静环摩擦界面热弹法向接触刚度分形模型[J]. 振动与冲击, 2020, 39(14): 257-263, 284.
CHEN J L, DING X X, ZHANG W Z, et al.Fractal prediction model for the thermo-elastic normal contact stiffness of frictional interfaces in dry gas seals[J]. Journal of vibration and shock, 2020, 39(14): 257-263, 284.
[16] 施迅, 王伟, 刘焜, 等. 微观随机粗糙表面接触有限元模型的构建与接触分析[J]. 润滑与密封, 2020, 45(5): 25-29.
SHI X, WANG W, LIU K, et al.Construction and contact analysis of micro-random rough surface contact finite element model[J]. Lubrication engineering, 2020, 45(5): 25-29.
[17] 安琪, 索双富, 林福严, 等. 平面磨削粗糙表面的微观接触模型[J]. 机械工程学报, 2020, 56(7): 240-248.
AN Q, SUO S F, LIN F Y, et al.A micro-contact model for rough surface of plane grinding[J]. Journal of mechanical engineering, 2020, 56(7): 240-248.
[18] 刘勇, 夏天, 陈志英, 等. 粗糙表面统计接触模型的提出与发展[J]. 摩擦学学报, 2020, 40(3): 395-406.
LIU Y, XIA T, CHEN Z Y, et al.Presentation and development of statistical contact model for rough surfaces[J]. Tribology, 2020, 40(3): 395-406.
[19] XIAO Y Y, WU L L, LUO J, et al.Mechanical response of thin hard coatings under indentation considering rough surface and residual stress[J]. Diamond & related materials, 2020, 108.
[20] 黄帅宗, 刘娟, 沈火明. 初始粗糙面对切向微动行为影响数值研究[J]. 四川轻化工大学学报(自然科学版), 2020, 33(3): 13-18.
HUANG S Z, LIU J, SHEN H M.Numerical study of the effect of initial roughness on tangential fretting behavior[J]. Journal of Sichuan University of Science & Engineering (natural science edition), 2020, 33(3): 13-18.
[21] ZHANG Y Q, LU H, ZHANG X B, et al.A normal contact stiffness model of machined joint surfaces considering elastic,elasto-plastic and plastic factors[J]. Proceedings of the institution of mechanical engineers, part J:journal of engineering tribology, 2020, 234(7): 1007-1016.
[22] 张学良, 温淑花. 基于接触分形理论的结合面切向接触刚度分形模型[J]. 农业机械学报, 2002, 33(3): 91-93, 97.
ZHANG X L, WEN S H.A fractal model of tangential contact stiffness of joint surfaces based on the contact fractal theory[J]. Journal of agricultural machinery, 2002, 33(3): 91-93, 97.
[23] 葛世荣, 朱华. 摩擦学的分形[M]. 北京: 机械工业出版社, 2005.
GE S R, ZHU H.Fractal of tribology[M]. Beijing:Machinery Industry Press, 2005.
[24] 夏先飞, 孙宇, 武凯, 等. 秸秆压块机组合环模的磨损机理[J]. 农业工程学报, 2014, 30(4): 32-38.
XIA X F, SUN Y, WU K, et al.Wear mechanism of ring die for straw briquetting machine[J]. Transactions of the CSAE, 2014, 30(4): 32-38.
[25] 张学良. 机械结合面动态特性及应用[M]. 北京: 中国科学技术出版社, 2002.
ZHANG X L.Dynamic characteristics of machine joint surface and its applications[J]. Beijing: Press of Science and Technology of China, 2002.
[26] 陈国安, 葛世荣, 刘金龙. 滑动摩擦力分形预测模型[J]. 中国矿业大学学报, 2000, 29(5): 50-53.
CHEN G A, GE S R, LIU J L.Fractal prediction model of sliding friction[J]. Journal of China University of Mining & Technology, 2000, 29(5): 50-53.
[27] 刘兵兵, 李伟凡, 赵仕宇, 等. 金属表面特征提取方法研究进展[J]. 机电技术, 2016(6): 139-141, 148.
LIU B B, LI W F, ZHAO S Y, et al.Research progress of metal surface feature extraction methods[J]. Electromechanical technology, 2016(2): 139-141, 148.
[28] 曹亚男. 各向异性机械加工粗糙纹理表面的分形建模方法及评定[D]. 西安: 西安理工大学, 2015.
CAO Y N.The fractal model and evaluation on the anisotropic and rough texture by machining operation[D]. Xi'an: Xi'an University of Technology, 2015.

基金

国家自然科学基金(51766016; 51666016; 31960365); 内蒙古自治区高等学校科学研究项目(NJZY20045)

PDF(1649 KB)

Accesses

Citation

Detail

段落导航
相关文章

/