基于VMD和SVPSO-BP的滚动轴承故障诊断

曹洁, 张玉林, 王进花, 余萍

太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 294-301.

PDF(1887 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1887 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 294-301. DOI: 10.19912/j.0254-0096.tynxb.2021-0071

基于VMD和SVPSO-BP的滚动轴承故障诊断

  • 曹洁1~3, 张玉林1, 王进花2, 余萍2
作者信息 +

FAULT DIAGNOSIS OF ROLLING BEARING BASED ON VMD AND SVPSO-BP

  • Cao Jie1~3, Zhang Yulin1, Wang Jinhua2, Yu Ping2
Author information +
文章历史 +

摘要

为了提高旋转机械滚动轴承故障诊断的准确率,提出一种基于变分模态分解(VMD)和缩放变异粒子群算法(SVPSO)优化BP神经网络的旋转机械滚动轴承故障诊断方法。通过在标准粒子群算法中加入缩放因子以及粒子变异操作提升其局部与全局寻优性能,得到一个改进的粒子群算法——缩放变异粒子群算法(SVPSO),再利用该算法优化BP网络的权值与阈值,提高BP神经网络的故障诊断精度;进一步,为了减少输入特征向量对BP神经网络分类性能的影响,采用VMD分解轴承振动信号,并计算其IMF分量时频熵的方法构建信号特征向量。通过与其他采用相同基准轴承数据集的诊断方法作对比,所提方法的故障诊断精度和算法稳定性均得到有效提升。

Abstract

In order to improve the accuracy of fault diagnosis of rolling bearings, this paper proposes a fault diagnosis method for rolling bearings of rotating machinery,which based on variational mode decomposition(VMD) and scalable and mutational particle swarm optimization(SVPSO) to optimize BP neural network. By introducing scaling factors and particle mutation operations to improve the local and global optimization performance of the standard particle swarm algorithm, an improved particle swarm algorithm- Scalable and Mutational particle swarm algorithm(SVPSO) is obtained, and then the algorithm is used to optimize the values of the weights and thresholds of the BP network to improve the fault diagnosis accuracy of BP neural network. Furthermore, for reducing the impact of the input feature vector on the classification performance of the BP neural network, VMD is used to decompose the bearing vibration signal and calculate the time-frequency entropy of its IMF component to construct the signal feature vector. By comparing with other diagnostic methods using the same benchmark bearing data set, the fault diagnosis accuracy and algorithm stability of the method proposed in this paper has been effectively improved.

关键词

风电机组 / 故障诊断 / 特征提取 / 滚动轴承 / BP神经网络 / 粒子群算法

Key words

wind turbines / fault diagnosis / feature extraction / rolling bearings / BP neural networks / PSO

引用本文

导出引用
曹洁, 张玉林, 王进花, 余萍. 基于VMD和SVPSO-BP的滚动轴承故障诊断[J]. 太阳能学报. 2022, 43(9): 294-301 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0071
Cao Jie, Zhang Yulin, Wang Jinhua, Yu Ping. FAULT DIAGNOSIS OF ROLLING BEARING BASED ON VMD AND SVPSO-BP[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 294-301 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0071
中图分类号: TP183    TH133.33   

参考文献

[1] ZARINBAL M, FAZEL ZARANDI M H, TURKSEN I B. Relative entropy fuzzy c-means clustering[J]. Information sciences, 2014, 260: 74-97.
[2] 赵志宏, 杨绍普. 一种基于样本熵的轴承故障诊断方法[J]. 振动与冲击, 2012, 31(6): 136-140, 154.
ZHAO Z H, YANG S P.Sample entropy-based roller bearing fault diagnosis method[J]. Journal of vibration and shock, 2012, 31(6): 136-140, 154.
[3] 向丹, 岑健. 基于EMD熵特征融合的滚动轴承故障诊断方法[J]. 航空动力学报, 2015, 30(5): 1149-1155.
XIANG D, CEN J.Method of roller bearing fault diagnosis based on feature fusion of EMD entropy[J]. Journal of aerospace power, 2015, 30(5): 1149-1155.
[4] 万书亭, 佟海侠, 董炳辉. 基于最小二乘支持向量机的滚动轴承故障诊断[J]. 振动·测试与诊断, 2010, 30(2): 149-152, 209.
WAN S T, TONG H X, DONG B H.Bearing fault diagnosis using wavelet packet transform and least square support vector machines[J]. Journal of vibration,measurement & diagnosis, 2010, 30(2): 149-152, 209.
[5] KANAI R A, DESAVALE R G, CHAVAN S P.Experimental-based fault diagnosis of rolling bearings using artificial neural network[J]. Journal of tribology, 2016, 138(3): 0742-4787.
[6] ZHAO N B, ZHENG H T, YANG L, et al.A Fault diagnosis approach for rolling element bearing based on s-transform and artificial neural network[C]//Asme Turbo Expo:Turbomachinery Technical Conference & Exposition,Charlotte, North Carolina, USA, 2017.
[7] LI J M, YAO X F, WANG X D, et al.Multiscale local features learning based on BP neural network for rolling bearing intelligent fault diagnosis[J]. Measurement, 2020, 153: 107419.
[8] SHAN M C, LIU W Y, WANG X.A novel robot joint bearing fault diagnosis method based on VMD in BP neural network[C]//2019 16th International Conference on Ubiquitous Robots(UR), Jeju, Korea, 2019.
[9] 皮骏, 刘鹏, 马圣, 等. 基于MGA-BP网络的航空轴承故障诊断[J]. 振动·测试与诊断, 2020, 40(2): 381-388, 423.
PI J, LIU P, MA S, et al.Aero-engine bearing fault diagnosis based on MGA-BP neural network[J]. Journal of vibration, measurement & diagnosis, 2020, 40(2): 381-388, 423.
[10] UNAL M, ONAT M, DEMETGUL M, et al.Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network[J]. Measurement, 2014, 58: 187-196.
[11] 李巍华, 翁胜龙, 张绍辉. 一种萤火虫神经网络及在轴承故障诊断中的应用[J]. 机械工程学报, 2015, 51(7): 99-106.
LI W H, WENG S L, ZHAO S H.A firefly neural network and its application in bearing fault diagnosis[J]. Journal of mechanical engineering, 2015, 51(7): 99-106.
[12] 翁胜龙. 基于萤火虫算法的聚类分析与神经网络诊断方法[D]. 广州: 华南理工大学, 2014.
WENG S L.A Clustering method and a neural network based on firefly algorithm in diagnostic analysis[D]. Guangzhou: South China University of Technology, 2014.
[13] 鞠晨, 张超, 樊红卫, 等. 基于小波包分解和PSO-BPNN的滚动轴承故障诊断[J]. 工矿自动化, 2020, 46(8): 70-74.
JU C, ZHANG C, FAN H W, et al.Rolling bearing fault diagnosis based on wavelet packet decomposition and PSO-BPNN[J]. Industry and mine automation, 2020, 46(8): 70-74.
[14] 向健平, 凌永志, 詹俊, 等. 基于SCADA系统的风电机组主轴承故障预警方法[J]. 电力科学与技术学报, 2019, 34(3): 223-228.
XIANG J P, LING Y Z, ZHAN J, et al.Fault early warning method of wind turbine main bearing based on SCADA system[J]. Journal of electric power science and technology, 2019, 34(3): 223-228.
[15] YUAN R, LYU Y, LI H W H, et al. Robust fault diagnosis of rolling bearings using multivariate intrinsic multiscale entropy analysis and neural network under varying operating conditions[J]. IEEE access, 2019, 7: 130804-130819.
[16] LU Q D, YANG R, ZHONG M Y, et al.An improved fault diagnosis method of rotating machinery using sensitive features and RLS-BP neural network[J]. IEEE transactions on instrumentation and measurement, 2019, 69(4): 1585-1593.
[17] DRAGOMIRETSKIY K, ZOSSO D.Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[18] LIU Y Y, YANG G L, LI M, et al.Variational mode decomposition denoising combined the detrended fluctuation analysis[J]. Signal processing, 2016, 125: 349-364.
[19] ZHANG M, JIANG Z N, FENG K.Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump[J]. Mechanical systems and signal processing, 2017, 93: 460-493.
[20] SHI Y, EBERHART R.A modified particle swarm optimizer[C]//IEEE World Congress on Computation Intelligence, Anchorage, AK, USA, 1998.
[21] VENKITARAMAN A, CHATTERJEE S, HANDEL P.On hilbert transform,analytic signal,and modulation analysis for signals over graphs[J]. Signal processing, 2019, 156: 106-115.
[22] MA T C, CAO H L, SHEN C.A temperature error parallel processing model for MEMS gyroscope based on a novel fusion algorithm[J]. Electronics, 2020, 9(3): 499.
[23] GAO W, WAI R J, QIAO S P, et al.Mechanical faults diagnosis of high-voltage circuit breaker via hybrid features and integrated extreme learning machine[J]. IEEE access, 2019, 7: 60091-60103.
[24] MAATEN L V D, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9: 2579-2605.

基金

国家自然科学基金(61763028; 62063020); 甘肃省自然科学基金(20JR5RA463)

PDF(1887 KB)

Accesses

Citation

Detail

段落导航
相关文章

/