光伏相变系统温控特性及散热结构优化设计

李昊琦, 魏利平, 庄子贤, 郑茂盛

太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 57-63.

PDF(1603 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1603 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 57-63. DOI: 10.19912/j.0254-0096.tynxb.2021-0073

光伏相变系统温控特性及散热结构优化设计

  • 李昊琦1, 魏利平1, 庄子贤1,2, 郑茂盛1
作者信息 +

TEMPERATURE CONTROL CHARACTERISTICS AND HEAT DISSIPATION STRUCTURE OPTIMIZATION DESIGN OF PHOTOVOLTAIC PHASE CHANGE SYSTEM

  • Li Haoqi1, Wei Liping1, Zhuang Zixian1,2, Zheng Maosheng1
Author information +
文章历史 +

摘要

针对光伏相变(PV-PCM)热管理系统建立数值模型,与实验结果对比验证模型的有效性。在此基础上,研究24 h内不同复合PCM物性参数(相变温度、膨胀石墨质量分数和厚度)对太阳电池温度的变化规律,利用正交实验法和直观分析法研究最高温度、高于45 ℃与41 ℃的时长和入夜后低于35 ℃的时长的影响。进一步模拟不同类型和数量的散热翅片对太阳电池工作温度的影响,优化PV-PCM系统的散热结构。研究显示,使用内向翅片的散热结构和相变温度为40.2 ℃、膨胀石墨质量分数为15%、厚度为40 mm的复合PCM,可使太阳电池的最高工作温度最小,其值约为42 ℃。

Abstract

A numerical model was established for the photovoltaic phase change (PV-PCM) thermal management system, and the validity of model was verified by comparing with the experimental results. On this basis, the variation rule of different composite PCM physical property parameters (phase change temperature, mass fraction of expanded graphite, and thickness) on solar cell temperature within 24 h was studied. The effects of maximum temperature, duration of time above 45 ℃ and 41 ℃, and duration of night below 35 ℃ were studied by orthogonal experiment method and visual analysis method. The influence of different types and numbers of heat dissipation fins on the working temperature of solar cell was further simulated to optimize heat dissipation structure of PV-PCM system. The research shows that the use of inward fin heat dissipation structure and the composite PCM with phase change temperature of 40.2 ℃, mass fraction of expanded graphite of 15%, and thickness of 40 mm can minimize the maximum operating temperature of the solar cell, which is about 42 ℃.

关键词

太阳电池 / 相变材料 / 数值模拟 / 温度 / 散热

Key words

solar cells / phase change materials / numerical simulation / temperature / heat dissipation

引用本文

导出引用
李昊琦, 魏利平, 庄子贤, 郑茂盛. 光伏相变系统温控特性及散热结构优化设计[J]. 太阳能学报. 2022, 43(9): 57-63 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0073
Li Haoqi, Wei Liping, Zhuang Zixian, Zheng Maosheng. TEMPERATURE CONTROL CHARACTERISTICS AND HEAT DISSIPATION STRUCTURE OPTIMIZATION DESIGN OF PHOTOVOLTAIC PHASE CHANGE SYSTEM[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 57-63 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0073
中图分类号: TE09   

参考文献

[1] CARMONA M, BASTOS A P, GARCÍA J D. Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic(PV) module[J]. Renewable energy, 2021, 172(7): 680-696.
[2] MA T, LI Z P, ZHAO J X.Photovoltaic panel integrated with phase change materials (PV-PCM): technology overview and materials selection[J]. Renewable and sustainable energy reviews, 2019, 116(12): 1-16.
[3] KANT K, SHUKLA A, SHARMA A, et al.Heat transfer studies of photovoltaic panel coupled with phase change material[J]. Solar energy, 2016, 140(12): 151-161.
[4] 李钊, 许思传, 常国峰, 等. 复合相变材料用于电池包热管理散热性能分析[J]. 电源技术, 2015, 39(2): 257-259.
LI Z, XU S C, CHANG G F, et al.Analysis of heat dissipation performance of composite PCM for battery pack thermal management[J]. Power technology, 2015, 39(2): 257-259.
[5] 凌子夜. 基于膨胀石墨基复合相变材料的动力电池热管理系统性能研究[D]. 广州: 华南理工大学, 2016.
LING Z Y.Research on the performance of power battery thermal management system based on expanded graphite-based composite PCM[D]. Guangzhou: South China University of Technology, 2016.
[6] 尤若波. 相变材料在动力电池热管理中的应用研究[J]. 储能科学与技术, 2017, 6(5): 1148-1157.
YOU R B.Application of PCM in thermal management of power battery[J]. Energy storage science and technology, 2017, 6(5): 1148-1157.
[7] 尹辉斌, 高学农, 丁静. 复合相变材料应用于电子散热的热分析[J]. 工程热物理学报, 2012, 33(5): 831-834.
YIN H B, GAO X N, DING J.Thermal analysis of electronic heat dissipation with composite PCM[J]. Journal of engineering thermophysics, 2012, 33(5): 831-834.
[8] ALLOUCHE Y, VARGA S, BOUDEN C, et al.Validation of a CFD model for the simulation of heat transfer in a tubes-in-tank PCM storage unit[J]. Renewable energy, 2016, 89(4): 371-379.
[9] 罗子庚. 基于定型复合相变材料的光伏电池板热管理的研究[D]. 广州: 华南理工大学, 2018.
LUO Z G.Study on thermal management of photovoltaic panels based on shaped composite PCM[D]. Guangzhou: South China University of Technology, 2018.
[10] KUMAR S, MULLICK S C.Wind heat transfer coefficient in solar collectors in outdoor conditions[J]. Solar energy, 2010, 84(6): 956-963.
[11] 杜晓光. 太阳能电池玻璃基板对流辐射复合传热特性的数值模拟[D]. 济南: 山东大学, 2013.
DU X G.Numerical simulation of composite heat transfer characteristics of convection and radiation on solar cell glass substrate[D]. Ji'nan: Shandong University, 2013.
[12] WANG X L, LI B, QU Z G, et al.Effects of graphite microstructure evolution on the anisotropic thermal conductivity of expanded graphite/paraffin phase change materials and their thermal energy storage performance[J]. International journal of heat and mass transfer, 2020, 155(7): 1-9.
[13] ZHOU D, WU S W, WU Z G, et al.Thermal performance analysis of multi-slab phase change thermal energy storage unit with heat transfer enhancement approaches[J]. Renewable energy, 2021, 172(7): 46-56.

基金

陕西省重点研究基金(2019GY-157); 西北大学紫藤科研合作专项(389040004; 389040001); 陕西省重点研究基金和紫藤科学研究合作专项资助西北大学项目

PDF(1603 KB)

Accesses

Citation

Detail

段落导航
相关文章

/