[1] 王传崑. 海洋能资源分析方法及储量评估[M]. 北京: 海洋出版社, 2009: 12-16. WANG C K.Analysis methods and reserves assessment of marine energy resources[M]. Beijing: China Ocean Press, 2009: 12-16. [2] 马哲. 振荡浮子式波浪发电装置的水动力学特性研究[D]. 青岛: 中国海洋大学, 2013. MA Z.Study on hydrodynamic characteristics of oscillating floating wave generator[D]. Qingdao: Ocean University of China, 2013. [3] 张步恩, 郑源, 付士凤, 等. 一种新型波浪能发电转换装置试验研究[J]. 中国电机工程学报, 2019, 39(24):7264-7271. ZHANG B E, ZHENG Y, FU S F, et al.Experimental study on a new wave energy conversion device[J]. Proceedings of the CSEE, 2019, 39(24): 7264-7271. [4] 刘春元, 洪立玮, 黄磊, 等. 外次级永磁直线电机在波浪发电系统中的应用[J]. 太阳能学报, 2019, 40(11):3017-3024. LIU C Y, HONG L W, HUANG L, et al.Application of external secondary permanent magnet linear motor in wave power generation system[J]. Acta solaris energiae sinica, 2019, 40(11): 3017-3024. [5] 林礼群, 姜家强, 吴必军, 等. 漂浮式波浪能直线发电原理试验研究[J]. 太阳能学报, 2016, 37(3): 564-569. LIN L Q, JIANG J Q, WU B J, et al.Experimental study on principle of floating wave energy linear power generation[J]. Acta solaris energiae sinica, 2016, 37(3): 564-569. [6] 郑明月, 杨金明, 林凯东, 等. 双自由度波浪发电系统的最大功率跟踪控制[J]. 可再生能源, 2017, 35(5):778-782. ZHENG M Y, YANG J M, LIN K D, et al.Maximum power tracking control of two degree of freedom wave power generation system[J]. Renewable energy, 2017, 35(5): 778-782. [7] 黄宣睿, 孙凯, 肖曦, 等. 基于平均功率估算的直驱海浪发电最大功率点跟踪控制方法[J]. 电力系统自动化, 2016, 40(14): 51-56. HUANG X R, SUN K, XIAO X, et al.Maximum power point tracking control method for direct drive ocean wave power generation based on average power estimation[J]. Automation of electric power systems, 2016, 40(14): 51-56. [8] 张家明, 黎明, 张帅, 等. 100 kW组合型振荡浮子式波浪发电装置能量转换系统研究[J]. 太阳能学报, 2017, 38(12): 3356-3362. ZHANG J M, LI M, ZHANG S, et al.Energy conversion system research of 100 kW combined oscillating float wave power plant[J]. Acta solaris energiae sinica, 2017, 38(12): 3356-3362. [9] 杨健, 黄磊, 仲伟波, 等. 直驱式波浪发电系统能量跟踪控制[J]. 电工技术学报, 2017, 32(1): 22-29. YANG J, HUANG L, ZHONG W B, et al.The energy tracking control strategy for direct drive wave energy generation[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 22-29. [10] LIU B L, LI J, PENG Y, et al.Experimental and numerical investigation of magnetohydrodynamic generator for wave energy[J]. Journal of ocean and wind energy, 2015, 2(1): 21-27. [11] ZHAO L Z, PENG Y, SHA C W, et al.Effect of liquid metal characteristics on performance of LMMHD wave energy conversion system[C]//Proceedings of the 19 International Offshore and Polar Engineering Conference, Chennai, India, 2009. [12] 刘艳娇. 点吸收式液态金属磁流体波浪发电系统性能特性研究[D]. 北京: 中国科学院大学, 2017. LIU Y J.Performance characteristics of point absorption liquid metal magnetohydrodynamic wave power generation system[D]. Beijing: University of Chinese Academy of Sciences, 2017. [13] 高巍. ANSYSAQWA软件入门提高[M]. 北京: 中国水利水电出版社, 2018: 130-145. GAO WEI.Introduction to ANSYSAQWA software[M]. Beijing: China Water & Power Press, 2018: 130-145. [14] PECHER A.Handbook of ocean wave energy[M]. USA: Ocean Engineering & Oceanography, 2018: 132-146. [15] 居滋象. 开环磁流体发电[M]. 北京: 北京工业大学出版社, 1998: 55-65. JU Z X.Open-loop magnetohydrodynamic power generation[M]. Beijing: Beijing University of Technology Press, 1998: 55-65. [16] 胡玉震,彭燕,叶冲, 等. 波浪能驱动的液态金属磁流体发电机特性分析[J]. 电工电能新技术, 2012, 31(16): 52-56. HU Y Z, PENG Y, YE C, et al.Characteristic analysis of liquid metal MHD generator driven by wave energy[J]. Advanced technology of electrical engineering and energy, 2012, 31(16): 52-56. |