采用流体仿真与实地测试相结合的方法研究空气源热泵冷岛效应的形成机理和影响因素。长春机组实地测试和仿真结果均表明,在有周围建筑物和环境风为4.92 m/s时,机组排风会影响机组下游空气温度和下游回风温度,使平均回风温度下降0.15~0.18 K。室外机换热量、风机风量、机组堆积、环境风和周边建筑形状是影响空气源热泵冷岛效应的重要因素,冷岛效应回流率和机组换热量成正相关,和风机风量成负相关;在无环境风和周边无建筑物的情况下,空气源热泵的冷风沿地面扩散到环境中。在无环境风工况下,单机组在换热量为52.8 kW,风量为3.4 kg/s时,回流开始时间为38 s,最终回流率为28%,最终回风温度和环境温度的温差为6.08 K。
Abstract
The formation mechanism and influencing factors of cold island effect of air-source heat pumps (ASHP) were studied by means of fluid simulation and field test. Both the field test and simulation in a real unit in Changchun show that when there are surrounding buildings and ambient wind is 4.92 m/s, the cold exhaust air will affect the downstream air temperature and inlet air temperature of finned tube, making the inlet air temperature of finned tube decrease by 0.15-0.18 K. The heat transfer flux, fan flowrate, the outdoor unit accumulation, ambient wind and building shape are the main factors influencing the cold island effect of ASHP. The degree of cold island effect has a positive correlation with the heat transfer flux and a negative correlation with the fan flowrate. In the case of no ambient wind and buildings, the cold exhaust air diffuses along the ground to the environment. Under the condition of no ambient wind, when the heat transfer flux is 52.8 kW and the fan flowrate is 3.4 kg/s, the recirculation start time is 38 s, the final cold recirculation rate is 28%, and the temperature difference between ambient temperature and inlet air temperature of finned tube is 6.08 K.
关键词
空气源热泵 /
数值模拟 /
环境温度 /
冷岛效应 /
实地测试
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 肖益民, 章程, 付祥钊. 冬季极端天气状况下空气源热泵运行实验研究[J]. 太阳能学报, 2010, 31(12): 1580-1584.
XIAO Y M, ZHANG C, FU X Z.Experimental studies on the operation of air source heat pump in extreme winter weather[J]. Acta energiae solaris sinica, 2010, 31(12): 1580-1584.
[2] 张春林, 程港, 钱志博. 双级压缩空气源热泵在农村煤改电项目中的应用[J]. 建筑热能通风空调, 2018, 37(8): 54-56, 53.
ZHANG C L, CHENG X, QIAN Z B.Application of two-stage compressed air source heat pump in rural coal to electricity project[J]. Buiding energy & environment, 2018, 37(8): 54-56, 53.
[3] 赵宝国, 王立群, 韩献军. 集中式空气源热泵用于采暖工程的实例研究[J]. 制冷技术, 2018, 38(3): 48-51, 61.
ZHAO B G, WANG L Q, HAN X J.Case study of central air-source heat pump for heating application[J]. Chinese journal of refrigeration technology, 2018, 38(3): 48-51, 61.
[4] 王梅荣. 冷岛效应及环境风场对空气源热泵阵列运行性能影响研究[D]. 济南: 山东大学, 2019.
WANG M R.Study on the influence of cold island effect and ambient wind field on the performance of air source heat pump array[D]. Ji’nan: Shandong University, 2019.
[5] 赵文升, 王松岭, 高月芬, 等. 直接空冷系统中热风回流现象的数值模拟和分析[J]. 动力工程, 2007, 27(4): 487-491, 496.
ZHAO W S, WANG S L, GAO Y F, et al.Numerical simulation and analysis of the hot phenomenon observed in direct air-cool recirculation systems[J]. Journal of power engineering, 2007, 27(4): 487-491, 496.
[6] LIU P Q, DUAN H S, ZHAO W L.Numerical investigation of hot air recirculation of air-cooled condensers at a large power plant[J]. Applied thermal engineering, 2009, 29(10): 1927-1934.
[7] 顾志福, 张文宏, 李辉, 等. 电厂直接空冷系统风效应风洞模拟实验研究[J]. 热能动力工程, 2003, 18: 159-162, 215.
GU Z F, ZHANG W H, LI H, et al.Experimental investigation of the wind tunnel simulation of wind effects on a directly air-cooled system for a power plant[J]. Journal of engineering for thermal energy and power, 2003, 18: 159-162, 215.
[8] 李炜, 槐文信. 浮力射流的理论及应用[M]. 北京: 科学出版社, 1997: 223-225.
LI W, HUAI W X.Theory and application of buoyant jets[M]. Beijing: Science Press, 1997: 223-225.
基金
国家自然科学基金(51776076); 广东省重点培育项目(2018B030308006)