设计一种全光谱太阳能分级分质利用系统进行光热协同反应与集热一体化实验研究。该系统通过光热协同催化材料将太阳光中紫外及部分可见波段光的能量转化为化学能进行储存,并利用系统中的集热材料将太阳光中部分可见及红外波段的光能转化为热能进行储存,从而实现对全光谱太阳能的综合利用。实验以光热协同分解水制氢为目标反应,利用导热油进行集热。结果表明,在反应材料表面温度为414 ℃的条件下,氢气产量为15.65 μmol/g,系统集热效率可达43.61%。
Abstract
A full spectrum solar energy classification and mass utilization system is designed to conduct the experimental study of photo-thermal coupling reaction and heat collection integration. The photo-thermal coupling catalytic materials is used in this system to convert the energy of ultraviolet and partial visible bands of sunlight into chemical energy for storage. And the heat-collecting materials is used to convert the light energy of partial visible and infrared bands of sunlight into thermal energy for storage. So that the comprehensive utilization of full spectrum solar energy is realized. In this paper, the objective reaction is to decompose water to produce hydrogen by photothermal coupling, and heat collection is carried out by using heat transfer oil. The results show that when the surface temperature of the reaction material is 414 ℃, the yield of hydrogen is 15.65 μmol/g, and the heat collection efficiency of the system is 43.61%.
关键词
槽式聚光 /
太阳能分级分质利用 /
光热协同反应 /
集热 /
制氢
Key words
trough light concentration /
solar energy classification and quality utilization /
photo-thermal coupling reaction /
heat collection /
hydrogen production
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WOLFF C M, CAPRIOGLIO P, STOLTERFOHT M, et al.Nonradiative recombination in perovskite solar cells: the role of interfaces[J]. Advanced materials, 2019, 31(52): 1902762.
[2] MAEDA K.Photocatalytic water splitting using semiconductor particles: history and recent developments[J]. Journal of photochemistry & photobiology C: photochemistry reviews, 2011, 12(4): 237-268.
[3] 李文甲. 光伏——光热——热化学互补的太阳能利用理论、方法与系统[D]. 北京: 中国科学院大学,2018.
LI W J.Theory, method and system of solar energy utilization with photovoltaic-photothermal-thermochemical complementation[D]. Beijing: University of Chinese Academy of Sciences, 2018.
[4] KHAN J, ARSALAN M H.Solar power technologies for sustainable electricity generation - a review[J]. Renewable & sustainable energy reviews, 2016, 55(2): 414-425.
[5] KOEPF E, ALXNEIT I, WIECKERT C, et al.A review of high temperature solar driven reactor technology: 25 years of experience in research and development at the Paul Scherrer Institute[J]. Applied energy, 2017, 188(2): 620-651.
[6] XIANG C J, ZHAO X L, TAN L W, et al.A solar tube: efficiently converting sunlight into electricity and heat[J]. Nano energy, 2018, 55(1): 269-276.
[7] 季杰, 程洪波, 何伟, 等. 太阳能光伏光热一体化系统的实验研究[J]. 太阳能学报, 2005, 26(2): 170-173.
JI J, CHENG H B, HE W, et al.Experimental study on a hybrid photovoltaic or thermal solarhang system[J]. Acta energiae solaris sinica, 2005, 26(2): 170-173.
[8] BAI Z, LIU Q B, LEI J, et al.Investigation on the mid-temperature solar thermochemical power generation system with methanol decomposition[J]. Applied energy, 2018, 217(5): 56-65.
[9] 王岸. 基于光热协同反应的太阳能有序转化综合利用[D]. 杭州: 浙江大学, 2020.
WANG A.Comprehensive utilization of solar energy based on photo-thermal coupling reaction[D]. Hangzhou: Zhejiang University, 2020.
[10] ZHANG Y W, CHEN J C, XU C Y, et al.A novel photo-thermochemical cycle of water-splitting for hydrogen production based on TiO2-x/TiO2[J]. International journal of hydrogen energy, 2016, 41(4): 2215-2221.
[11] ZHANG Y W, XU C Y, CHEN J C, et al.A novel photo-thermochemical cycle for the dissociation of CO2 using solar energy[J]. Applied energy, 2015, 156(10): 223-229.
[12] WU Q L, LI Z, ZHANG X H, et al.Enhanced defect-water hydrogen evolution method for efficient solar utilization: photo-thermal chemical coupling on oxygen vacancy[J]. Chemical engineering journal, 2020, 408: 127248.
基金
国家自然科学基金(51976190); 浙江省自然科学基金(LR18E060001); 中央高校基本科研业务费专项资金(2019FZA4013)