RESEARCH ON DC MICROGRID LOMPREHENSIVE CONTROL STRATEGY BASED ON MMC-PET
Zhao Zhenmin1, Cheng Jing1,2, Wang Weiqing1,2, Zhang Ling3, Nan Dongliang1,3
Author information+
1. School of Electrical Engineering, Xinjiang University, Urumuqi 830047, China; 2. Engineering Research Center of Education Ministry for Renewable Energy Power Generation and Grid Technology, Xinjiang University, Urumuqi 830047, China; 3. Electric Power Research Institute of State Grid Xinjiang Electric Power Co., Ltd., Urumqi 830011, China
In order to improve the power quality of the smart distribution network, a DC microgrid architecture based on the MMC-PET and its integrated control strategy are proposed. The grid connection mode of distributed power supply is simplified. The controller of MMC-PET, wind and solar storage system is designed to deal with power quality problems such as deep voltage drop and three-phase imbalance in the intelligent distribution network. The MMC-PET based DC microgrid wind and solar storage system simulation model was built on the PSCAD/EMTDC platform, and the simulation analysis is summarized. The results show that the method greatly improved the adaptability of new energy access, and had a faster dynamic response speed and stronger robustness, by which the power quality of smart distribution networks can be effectively improved.
Zhao Zhenmin, Cheng Jing, Wang Weiqing, Zhang Ling, Nan Dongliang.
RESEARCH ON DC MICROGRID LOMPREHENSIVE CONTROL STRATEGY BASED ON MMC-PET[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 458-464 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0144
中图分类号:
TM421
TM72
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 盛万兴, 吴鸣, 季宇, 等. 分布式可再生能源发电集群并网消纳关键技术及工程实践[J]. 中国电机工程学报, 2019, 39(8): 2175-2186, 1. SHENG W X, WU M, JI Y, et al.Key technologies and engineering practice of distributed renewable energy power generation cluster integration and consumption[J]. Proceedings of the CSEE, 2019, 39(8): 2175-2186, 1. [2] 郭慧, 汪飞, 张笠君, 等. 基于能量路由器的智能型分布式能源网络技术[J]. 中国电机工程学报, 2016, 36(12): 3314-3325. GUO H, WANG F, ZHANG L J, et al.Intelligent distributed energy network technology based on energy router[J]. Proceedings of the CSEE, 2016, 36(12): 3314-3325. [3] 艾欣, 荣经国, 吕正, 等. 一种新型的能量路由器结构及其控制策略的研究[J]. 电网技术, 2019, 43(4): 1202-1210. AI X, RONG J G, LYU Z, et al.Research on a new type of energy router structure and its control strategy[J]. Power system technology, 2019, 43(4): 1202-1210. [4] WANG Y G, HUANG J S.Coordinated control method for AC/DC distribution network based on four-port energy router[J]. American journal of electrical and electronic engineering, 2020, 8(2): 6245-6258. [5] 梁得亮, 柳轶彬, 寇鹏, 等. 智能配电变压器发展趋势分析[J]. 电力系统自动化, 2020, 44(7): 1-14. LIANG D L, LIU Y B, KOU P, et al.Analysis of the development trend of intelligent distribution transformers[J]. Automation of electric power systems, 2020, 44(7): 1-14. [6] 周柯, 肖凡. 基于输出侧双模块并联的电力电子变压器高电能质量控制策略[J]. 南方电网技术, 2017, 11(12): 23-30. ZHOU K, XIAO F.A high power quality control strategy for power electronic transformers based on dual modules on the output side in parallel[J]. China southern power grid technology, 2017, 11(12): 23-30. [7] 李振, 盛万兴, 杜松怀, 等. 采用VSG的柔性配电装备交流端口电压控制及稳定性分析[J]. 电力系统自动化, 2020, 44(8): 141-148. LI Z, SHENG W X, DU S H, et al.Voltage control and stability analysis of AC port of flexible power distribution equipment using VSG[J]. Automation of electric power systems, 2020, 44(8): 141-148. [8] 李俊杰, 吕振宇, 吴在军, 等. 基于电力电子变压器的交直流混合微电网运行模式自适应切换策略[J]. 电力自动化设备, 2020, 40(10): 126-131,138. LI J J, LYU Z Y, WU Z J, et al.Adaptive switching strategy of AC/DC hybrid microgrid operation mode based on power electronic transformer[J]. Electric power automation equipment, 2020, 40(10): 126-131,138. [9] 王丹, 田杰, 毛承雄. 智能电网中的电子电力变压器:改善电力系统可控性(英文)[J]. 电工电能新技术, 2017, 36(5): 21-33. WANG D, TIAN J, MAO C X.Electronic power transformers in smart grids: improving the controllability of power systems (English)[J]. New technology of electrical engineering and energy, 2017, 36(5): 21-33. [10] 董雷, 张涛, 蒲天骄, 等. 含电力电子变压器的交直流配电网电压不平衡优化抑制方法[J]. 电网技术, 2018, 42(11): 3609-3616. DONG L, ZHANG T, PU T J, et al.Optimal suppression method for voltage imbalance of AC and DC distribution network with power electronic transformers[J]. Power system technology, 2018, 42(11): 3609-3616. [11] 苗虹, 周宇鑫, 曾成碧, 等. 一种含高效率输入级及多端口输出级的固态变压器[J]. 电力科学与技术学报, 2018, 33(3): 57-63. MIAO H, ZHOU Y X, ZENG C B, et al.A solid-state transformer with high-efficiency input stage and multi-port output stage[J]. Journal of electric power science and technology, 2018, 33(3): 57-63. [12] 段青, 乐健, 吕志鹏, 等. 利用电能路由器的配电网电能质量控制[J]. 电测与仪表, 2017, 54(14): 57-63. DUAN Q, LE J, LYU Z P, et al.Power quality control of distribution network using power routers[J]. Electrical measurement and instrumentation, 2017, 54(14): 57-63. [13] 李振, 吕志鹏, 盛万兴, 等. 基于虚拟同步电机控制的固态变压器对多控制类型分布式电源接入的适应性分析[J]. 电力自动化设备, 2020, 40(9): 80-90. LI Z, LYU Z P, SHENG W X, et al.Adaptability analysis of solid-state transformer based on virtual synchronous motor control to multi-control type distributed power access[J]. Electric power automation equipment, 2020, 40(9): 80-90. [14] 康勇, 林新春, 潘辰. 弱电网下采用SVC与SVG补偿后新能源并网变换器的功率传输特性分析[J]. 中国电机工程学报, 2021, 41(6): 2115-2125. KANG Y, LIN X C, PAN C.Analysis of power transmission characteristics of new energy grid-connected converters after using SVC and SVG compensation under weak grid[J]. Proceedings of the chinese society for electrical engineering, 2021, 41(6): 2115-2125. [15] RUI L, JOHN E F, BARRY W W.Influence of third harmonic injection on modular multilevel converter-based high-voltage direct current transmission systems[J]. IET generation, transmission & distribution, 2016, 10(11): 8585-8601. [16] ZHANG Z R, XU Z, JIANG W, et al.Operating area for modular multilevel converter based high-voltage direct current systems[J]. IET renewable power generation, 2016, 10(6): 1205-1212. [17] 苗宇, 邹晓松, 袁旭峰. 面向中压配电网的电力电子变压器控制策略研究[J]. 电测与仪表, 2019, 56(12): 129-134. MIAO Y, ZOU X S, YUAN X F.Research on control strategy of power electronic transformer for medium voltage distribution network[J]. Electrical measurement and instrumentation, 2019, 56(12): 129-134. [18] GB 12325——90, 电能质量供电电压允许偏差[S]. GB 12325——90, Allowable deviation of power supply voltage[S].