下吸式生物质气化炉热力学平衡模型研究

杨辉, 陈文宇, 孙姣, 陈文义

太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 335-342.

PDF(1603 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1603 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 335-342. DOI: 10.19912/j.0254-0096.tynxb.2021-0156

下吸式生物质气化炉热力学平衡模型研究

  • 杨辉1,2, 陈文宇1,2, 孙姣1,2, 陈文义1,2
作者信息 +

STUDY ON THERMODYNAMIC EQUILIBRIUM MODEL OF DOWNDRAFT BIOMASS GASIFIER

  • Yang Hui1,2, Chen Wenyu1,2, Sun Jiao1,2, Chen Wenyi1,2
Author information +
文章历史 +

摘要

建立下吸式生物质气化炉热力学平衡模型,该模型包括焦炭、焦油和气体,并用已公布的实验数据对模型进行验证,均方根(RMS)在1.304~3.814之间,结果表明该模型的预测值与实验数据吻合较好,可认为模型可靠。然后模拟棉秆在下吸式生物质气化炉中以空气和富氧气体2种气化氛围下,不同操作参数(当量比、预热温度和气化炉反应温度)下对棉秆气化的气体组分、热值和产率的影响。模拟结果表明:富氧气体为气化剂时,当量比从0.20增至0.35时,气体中N2含量比空气显著下降,达10%以上,同时发现能提高气体中H2和CO的含量和热值,热值比空气提高约20%。预热温度对气化成分变化影响有限,随预热温度从30 ℃变化到130 ℃,气体的平均热值从空气的5.2 MJ/m3提高到富氧气体的7.0 MJ/m3。随气化炉内反应温度从750 ℃升至1250 ℃,空气和富氧气体2种气化剂下的H2和CO分别从20.94%、26.84%和21.77%、28.67%下降到4.06%、9.12%和10.49%、21.60%,导致气体的热值降低。

Abstract

The thermodynamic equilibrium model of downdraft biomass gasifier was established, which includes coke, tar and gas. The model was verified with published experimental data, and its root mean square(RMS) was between 1.304 and 3.814. The results show that the predicted value of the model is in good agreement with the experimental data, and the model could be considered reliable. Then, the effects of different operating parameters (equivalent ratio, preheating temperature and reaction temperature of gasifier) on gas composition, calorific value and yield of cotton stalk gasification in two gasification atmospheres of cotton stalk downdraft biomass gasifier with air and oxygen-rich gas were simulated. The simulation results show that when the oxygen-enriched gas is used as the gasification agent, with the equivalent ratio from 0.20 to 0.35, the N2 content in the gas is significantly lower than that in the air, decreasing more than 10%. While it was found that the content of H2 and CO and the calorific value in the gas can be increased, and the calorific value is about 20% higher than that with air. The preheating temperature had a limited effect on the change of gasification composition. As the preheating temperature changed from 30 ℃ to 130 ℃, the average calorific value of the gas increased from 5.2 MJ/m3 of air to 7.0 MJ/m3 of oxygen-enriched gas. As the reaction temperature of the gasifier increased from 750 ℃ to 1250 ℃, H2 and CO under the two gasification agents of air and oxygen-enriched gas decreased from 20.94%、26.84% and 21.77%、28.67% to 4.06%、9.12% and 10.49%、21.60%,leading to a decrease in the calorific value of the gas.

关键词

生物质 / 下吸式气化炉 / 热力学模型 / 富氧气化

Key words

biomass / downdraft gasifier / thermodynamic model / rich oxygen gasification

引用本文

导出引用
杨辉, 陈文宇, 孙姣, 陈文义. 下吸式生物质气化炉热力学平衡模型研究[J]. 太阳能学报. 2022, 43(10): 335-342 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0156
Yang Hui, Chen Wenyu, Sun Jiao, Chen Wenyi. STUDY ON THERMODYNAMIC EQUILIBRIUM MODEL OF DOWNDRAFT BIOMASS GASIFIER[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 335-342 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0156
中图分类号: TK6   

参考文献

[1] BARUAH D.Modeling of biomass gasification: a review[J]. Renewable sustainable energy reviews, 2014, 39: 806-815.
[2] SHARMA A K.Equilibrium modeling of global reduction reactions for a downdraft (biomass) gasifier[J]. Energy conversion and management, 2008, 49(4): 832-842.
[3] 赵展, 刘晓东, 姜雪, 等. 生物质气化过程热力学模型分析[J]. 应用科技, 2011, 38(7): 44-48.
ZHAO Z, LIU X D, JIANG X, et al.Thermodynamic model analysis of biomass gasification process[J]. Applied science and technology, 2011, 38(7): 44-48.
[4] 蒋受宝, 蒋绍坚, 张灿. 生物质气化计算平衡模型[J]. 中南林学院学报, 2006, 26(2): 68-71.
JIANG S B, JIANG S J, ZHANG C.Calculation balance model of biomass gasification[J]. Journal of Central South Forestry University, 2006, 26(2): 68-71.
[5] ITAI Y, SANTOS R, BRANQUINHO M, et al.Numerical and experimental assessment of a downdraft gasifier for electric power in Amazon using açaí seed (Euterpe oleracea Mart.) as a fuel[J], Renewable energy, 2014, 66: 662-669.
[6] 蒋绍坚, 赵颖, 林竹, 等. 高温空气气化数学模型的建立与分析[J]. 太阳能学报, 2006, 27(10): 1058-1062.
JIANG S J, ZHAO Y, LIN Z, et al.Establishment and analysis of mathematical model for high-temperature air gasification[J]. Acta energia solaris sinica, 2006, 27(10): 1058-1062.
[7] VERA D, MENA B D, JURADO F, et al.Study of a downdraft gasifier and gas engine fueled with olive oil industry wastes[J]. Applied thermal engineering, 2013, 51(1-2): 119-129.
[8] RONG L, MANEERUNG T, NEOH K G, et al.Co-gasification of sewage sludge and woody biomass in a fixed-bed downdraft gasifier: toxicity assessment of solid residues[J]. Waste manage, 2015, 36(2): 241-255.
[9] FORTUNATO B, BRUNETTI G, CAMPOREALE S M, et al.Thermodynamic model of a downdraft gasifier[J]. Energy conversion and management, 2017, 140(17): 281-294.
[10] JARUNGTHAMMACHOTE S, DUTTA A.Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier[J]. Energy, 2007, 32(9): 1660-1669.
[11] HUANG H J, RAMASWAMY S.Modeling biomass gasification using thermodynamic equilibrium approach[J]. Applied biochemistry and biotechnology, 2009, 154(1): 193-204.
[12] 闫桂焕, 孙奉仲, 孙荣峰, 等. 生物质气化过程的热力学模型研究[J]. 农业机械学报, 2010, 41(9): 85-89.
YAN G H, SUN F Z, SUN R F, et al.Study on thermodynamic model of biomass gasification process[J]. Transactions of the Chinese Society of Agricultural Machinery, 2010, 41(9): 85-89.
[13] 闫桂焕, 许敏, 许崇庆, 等. 考虑焦油的生物质气化过程热力学模型[J]. 农业工程学报, 2013, 29(S1): 230-234.
YAN G H, XU M, XU C Q, et al.Thermodynamic model of biomass gasification process considering tar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(S1): 230-234.
[14] TARALAS G, KONTOMINAS M G, KAKATSIOS X.Modeling the thermal destruction of toluene (C7H8) as tar-related species for fuel gas cleanup[J]. Energy fuels, 2003, 17(2): 329-337.
[15] PARK H J, PARK S H, SOHN J M, et al.Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts[J]. Bioresource technology, 2010, 101(1): S101-S103.
[16] JABLONSKI W, GASTON K R, NIMLOS M R, et al.Pilot-scale gasification of corn stover, switchgrass, wheat straw, and wood: 2. identification of global chemistry using multivariate curve resolution techniques[J]. Industrial and engineering chemistry research, 2009, 48(23): 10691-10701.
[17] CHEN Y H, PARVEZ A M, SCHMID M, et al.Reforming of tar model compounds over sustainable and low-cost biochar: special focus on spontaneous gasification reactivity and tar reforming kinetics for reformer design[J]. Chemical engineering journal, 2020, 408: 127350.
[18] LI X T, GRACE J R, LIM C J, et al.Biomass gasification in a circulating fluidized bed[J]. Biomass bioenergy, 2004, 26(2): 171-193.
[19] 孙玉希, 宋若静, 刘勇, 等. 物理化学[M]. 北京: 化学工业出版社, 2016: 470-486.
SUN Y X, SONG R J, LIU Y, et al.Physical chemistry[M]. Beijing: Chemical Industry Press, 2016: 470-486.
[20] 何杰, 邵国泉, 刘锦, 等. 物理化学[M]. 北京: 化学工业出版社, 2018, 409-412.
HE J, SHAO G Q, LIU J, et al.Physical chemistry[M]. Beijing: Chemical Industry Press, 2018, 409-412.
[21] VILLETTA M L, COSTA M, MASSAROTTI N.Modelling approaches to biomass gasification: a review with emphasis on the stoichiometric method[J]. Renewable and sustainable energy reviews, 2017, 74: 71-88.
[22] SIMONE M, BARONTINI F, NICOLELLA C, et al.Gasification of pelletized biomass in a pilot scale downdraft gasifier[J]. Bioresource technology, 2012, 116: 403-412.
[23] MASMOUDI M A, HALOUANI K, SAHRAOUI M.Comprehensive experimental investigation and numerical modeling of the combined partial oxidation-gasification zone in a pilot downdraft air-blown gasifier[J]. Energy conversion and management, 2017, 144(1): 34-52.
[24] ARUN K, RAMANAN M V, GANESH S S.Stoichiometric equilibrium modeling of corn cob gasification and validation using experimental analysis[J]. Energy fuels, 2016, 30(9): 7435-7442.
[25] AYDIN E S, YUCEL O, SADIKOGLU H.Experimental study on hydrogen-rich syngas production via gasification of pine cone particles and wood pellets in a fixed bed downdraft gasifier[J]. International journal of hydrogen energy,2019,44(32): 17389-17396.
[26] 孟凡彬, 王贵路, 李晓伟, 等. 高当量比生物质氧气气化试验研究[J]. 太阳能学报, 2013, 34(3): 377-381.
MENG F B, WANG G L, LI X W, et al.Experimental study on oxygen gasification of biomass with high equivalence ratio[J]. Acta energia solaris sinica, 2013, 34(3): 377-381.

基金

河北省科技计划(16824316D); 河北省科技支撑计划(11230909D-5); 河北省科技型中小企业创新英才(169A76334H)

PDF(1603 KB)

Accesses

Citation

Detail

段落导航
相关文章

/