采用碱性过氧化氢(AHP)体系对慈竹进行预处理,研究过氧化氢(H2O2)用量对竹材化学组分及酶水解得率的影响。利用X射线衍射(XRD)和傅里叶变换红外光谱仪(FTIR)分析预处理前后物料的物理和化学结构变化,采用二维核磁共振技术研究预处理物料中剩余木质素的化学结构。结果表明:AHP预处理过程中,随着H2O2用量(质量分数)的增加,竹材的葡聚糖含量(相对质量百分比)先增加后减少,木聚糖含量基本不变,而木质素含量整体呈减少趋势。AHP预处理能显著提升竹材的酶解效率,在纤维素酶用量为15 FPU/g葡聚糖,H2O2用量为7.0%时,预处理竹材的酶水解性能最高,葡聚糖和木聚糖酶水解得率分别为93.9%和100%。研究发现,慈竹木质素脱除率在H2O2用量达到2.0%后趋于稳定,为68.8%,继续增加H2O2用量,木质素脱除率无明显提升,对预处理竹材中剩余木质素进行2D-HSQC核磁分析,这部分难以脱除的木质素的化学结构为:64%的S单元、33.7%的G单元和61.6%的β——O——4键,其中S/G值为1.90。
Abstract
This study pretreated bamboo with alkaline hydrogen peroxide (AHP), the effects of hydrogen peroxide concentration on chemical composition and enzymatic digestibility were investigated. The physical and chemical structural variations of the samples before and after the pretreatment were studied with X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), and the chemical structure of residual lignins in pretreated bamboo were investigated by 2D-HSQC NMR spectroscopy. The results indicate that in the process of alkaline hydrogen peroxide pretreatment, with the increase of H2O2 dosage, the glucan content of bamboo first increases and then decreases, while the contents of xylan remains basically unchanged, and the lignin content shows a decreasing trend after the AHP pretreatment. The AHP pretreatment improves the enzymatic digestibility of bamboo, and the enzymatic hydrolysis yield reaches the maximum of 93.9% (glucan) and 100% (xylan) when the cellulase dosage is 15 FPU/g glucan and H2O2 dosage is 7.0%. The lignin removal rate plateau at the 2.0% H2O2, with a delignification of ~68% (2.0% H2O2). The 2D-HSQC NMR was performed to reveal the chemical structure of the residual lignin in the pretreated bamboo sample, it is found that the chemical structure of the undegradable residual lignin contains 64% S units, 33.7% G units and 61.6% β-O-4 bonds with the S/G value of 1.90.
关键词
生物乙醇 /
酶解 /
去木质素 /
木质素结构 /
竹材 /
碱性过氧化氢预处理
Key words
bioethanol /
enzymatic hydrolysis /
delignification /
lignin structure /
bamboo /
alkaline hydrogen peroxide pretreatment
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CARVALHO D J, MORETTI R R, COLODETTE J L, et al.Assessment of the self-sustained energy generation of an integrated first and second generation ethanol production from sugarcane through the characterization of the hydrolysis process residues[J]. Energy conversion and management, 2020, 203: 112267.
[2] LIMAYEM A, RICKE S C.Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects[J]. Progress in energy and combustion science, 2012, 38(4): 449-467.
[3] BIAN H, LUO J, WANG R, et al.Recyclable and reusable maleic acid for efficient production of cellulose nanofibrils with stable performance[J]. ACS sustainable chemistry & engineering 2019, 7(24): 20022-20031.
[4] 惠珍珍, 迟聪聪, 柳咪, 等. 乙酸预处理对木质纤维素结构及性能的影响[J]. 林业工程学报, 2019, 4(1): 88-93.
HUI Z Z, CHI C C, LIU M, et al.Effect of acetic acid pretreatment on structure and properties of lignocellulose material[J]. Journal of forestry engineering, 2019, 4(1): 88-93.
[5] SUN Y, CHENG J Y.Hydrolysis of lignocellulosic materials for ethanol production: a review[J]. Bioresource technology, 2002, 83(1): 1-11.
[6] HENDRIKS A T W M,ZEEMAN G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource technology, 2009, 100(1): 10-18.
[7] KELLOCK M, MAAHEIMO H, MARJAMAA K, et al.Effect of hydrothermal pretreatment severity on lignin inhibition in enzymatic hydrolysis[J]. Bioresource technology, 2019, 280: 303-312.
[8] TALEBNIA F, KARAKASHEV D, ANGELIDAKI I.Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation[J]. Bioresource technology, 2010, 101(13): 4744-4753.
[9] MENG X Z, RAGAUSKAS A J.Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates[J]. Current opinion in biotechnology, 2014, 27: 150-158.
[10] 王锐, 辛东林, 张军华. 木质素降解产物对纤维素酶和木聚糖酶水解的抑制[J]. 林业工程学报, 2019, 4(4): 78-84.
WANG R, XIN D L, ZHANG J H.Inhibitory effects of vanillin, 4-hydroxybenzaldehyde and syringaldehyde on cellulases and xylanases[J]. Journal of forestry engineering, 2019, 4(4): 78-84.
[11] SLUITER A, HAMES B, RUIZ R, et al.Determination of structural carbohydrates and lignin in biomass[J]. Laboratory analytical procedure, 2008, 1617(1): 1-16.
[12] ZHU L, O DWYER J P, CHANG V S, et al. Structural features affecting biomass enzymatic digestibility[J]. Bioresource technology, 2008, 99(9): 3817-3828.
[13] HUANG C, HE J, DU L, et al.Structural characterization of the lignins from the green and yellow bamboo of bamboo culm (Phyllostachys pubescens)[J]. Journal of wood chemistry and technology, 2016, 36(3): 157-172.
[14] WEN J L, SUN S L, XUE B L, et al.Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology[J]. Materials, 2013, 6(1): 359-391.
[15] ALVAREZ-VASCO C, ZHANG X.Alkaline hydrogen peroxide pretreatment of softwood: hemicellulose degradation pathways[J]. Bioresource technology, 2013, 150: 321-327.
[16] ZHU S D, HUANG W J, HUANG W X, et al.Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent[J]. Applied energy, 2015, 154: 190-196.
[17] DEMARTINI J D, PATTATHIL S, MILLER J S, et al.Investigating plant cell wall components that affect biomass recalcitrance in poplar and switchgrass[J]. Energy & environmental science, 2013, 6(3): 898-909.
[18] MENG X Z, WELLS T, SUN Q N, et al.Insights into the effect of dilute acid, hot water or alkaline pretreatment on the cellulose accessible surface area and the overall porosity of Populus[J]. Green chemistry, 2015, 17(8): 4239-4246.
[19] RAMADOSS G, MUTHUKUMAR K.Influence of dual salt on the pretreatment of sugarcane bagasse with hydrogen peroxide for bioethanol production[J]. Chemical engineering journal lausanne, 2015, 260: 178-187.
[20] LI M, CAO S L, MENG X Z, et al.The effect of liquid hot water pretreatment on the chemical-structural alteration and the reduced recalcitrance in poplar[J]. Biotechnology for biofuels,2017, 10(1): 237.
[21] 楚杰, 马莉, 张军华. 热处理竹材的化学成分傅里叶变换红外光谱分析[J]. 光谱学与光谱分析, 2016, 36(11): 3557-3562.
CHU J, MA L, ZHANG J H.The chemical composition of bamboo after heat pretreatment with fourier infrared spectrum analysis[J]. Spectroscopy and spectral analysis,2016, 36(11): 3557-3562.
[22] XU F, SUN R C,SUN J X,et al.Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse[J]. Analytica chimica acta,2005, 552(1-2): 207-217.
[23] WANG B, WANG X J, FENG H.Deconstructing recalcitrant Miscanthus with alkaline peroxide and electrolyzed water[J]. Bioresource technology, 2010, 101(2): 752-760.
[24] KARACA B, BOZACI E, DEMIR A, et al.Effects of enzymatic treatments on surface morphology and chemical structure of linen fabrics[J]. Journal of applied polymer science, 2012, 125(1): 793-797.
[25] 苗林平, 霍丽, 徐力, 等. 碱性过氧化氢预处理小麦秸秆强化酶解产糖的研究[J]. 纤维素科学与技术, 2018, 26(4): 45-51.
MIAO L P, HUO L, XU L, et al.Effects of mild alkaline hydrogen peroxide(AHP) pretreatment on enzymatic saccharification of wheat straw[J]. Journal of cellulose science and technology, 2018, 26(4): 45-51.
[26] WEN J L, SUN S L, XUE B L, et al.Structural elucidation of inhomogeneous lignins from bamboo[J]. International journal of biological macromolecules, 2015, 77: 250-259.
[27] KELLOCK M, MAAHEIMOA H, MARJAMAA K, et al.Effect of hydrothermal pretreatment severity on lignin inhibition in enzymatic hydrolysis[J]. Bioresource technology, 2019, 280: 303-312.
[28] DEL RÍO J C, RENCORET J, PRINSEN P, et al. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods[J]. Journal of agricultural and food chemistry, 2012, 60(23): 5922-5935.
基金
国家自然科学基金(32001273); 江苏省生物质能源与材料重点实验室基本科研业务费项目(JSBEM-S-202004)