光伏/光热-地源热泵联合供热系统运行性能研究

刘仙萍, 田东, 雷豫豪, 郝小礼, 李大鹏

太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 88-97.

PDF(3871 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3871 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 88-97. DOI: 10.19912/j.0254-0096.tynxb.2021-0172

光伏/光热-地源热泵联合供热系统运行性能研究

  • 刘仙萍1,2, 田东1, 雷豫豪1, 郝小礼1,2, 李大鹏3
作者信息 +

PERFORMANCE ANALYSIS FOR SOLAR PHOTOVOLTAIC/THERMAL-GROUND SOURCE HEAT PUMP HYBRID HEATING SYSTEM

  • Liu Xianping1,2, Tian Dong1, Lei Yuhao1, Hao Xiaoli1,2, Li Dapeng3
Author information +
文章历史 +

摘要

为解决太阳电池的发电效率随温度升高而下降以及地源热泵系统供热引起的土壤热失衡问题,以典型居住建筑的光伏/光热-地源热泵(PV/T-GSHP)联合供热系统为研究对象,基于TRNSYS软件,采用土壤温度、地源热泵机组季节能效比、光伏发电效率和太阳能保证率为评价指标,对该联合供热系统进行运行性能分析。研究结果表明:夏热冬冷地区(以长沙为例)太阳能保证率相对较高,PV/T组件面积为满屋顶最大化安装(900 m2)时,第20年末土壤温度相比初始地温仅升高0.8 ℃,热泵机组季节能效比约为5.1,太阳能保证率为97.0%~98.7%;不同气候地区的太阳能保证率与PV/T组件面积和建筑全年累计供热量有关,通过定义单位建筑全年累计供热量PV/T组件面积指标,得到中国不同气候地区的太阳能保证率与该指标的耦合关系,回归方程的决定系数R2为0.983,得出在已知建筑全年累计供热量和太阳保证率设计目标值的条件下所需PV/T组件面积的计算方法。PV/T-GSHP联合供热系统的全年运行能耗显著小于平板太阳能集热器-地源热泵联合系统(最小降幅为沈阳,49.7%),远小于空气源热泵(最小降幅为石家庄,79.8%)和燃气壁挂炉(最小降幅为沈阳,65.1%)。

Abstract

In order to solve the problem that the electrical efficiency of photovoltaic cells decreases with the increase of temperature, and the soil heat imbalance caused by ground source heat pump system heating, the operation performance of the solar photovoltaic/thermal-ground source heat pump (PV/T-GSHP) hybrid heating system is investigated using TRNSYS software. A typical residential building model is used, and the soil temperature, seasonal coefficient of performance for heat pump units (SCOPHP), photovoltaic electrical efficiency and solar fraction are taken as the evaluation indexes. It is found that: the solar fraction is relatively high in hot summer and cold winter region(take Changsha as a case), the soil temperature at the end of 20th years is only 0.8 ℃ higher than the initial ground temperature, the SCOPHP is about 5.1 and the solar fraction is 97.0%-98.7%, when the PV/T modules are installed on full of the roof (900 m2); The solar fraction in different climate regions is related to the area of PV/T modules and the cumulative heat load of building. By defining the index, PV/T module area per accumulated heat load of building, the coupling relationship between the solar fraction and the defined index in different climate regions of China is obtained. In the regression equation, the coefficient of determination, R2, is 0.983. The area of PV/T modules required can be calculated from the regression equation when the building cumulative heat load and solar fraction are known. The annual primary energy consumption of PV/T-GSHP hybrid heating system is significantly less than that of flat panel solar collector and ground source heat pump hybrid heating system (the minimum decrease is in Shenyang, 49.7%), much less than that of air source heat pump system (the minimum decrease is in Shijiazhuang, 79.8%) and gas wall mounted furnace system (the minimum decrease is in Shenyang, 65.1%), respectively.

关键词

地源热泵 / 太阳电池 / 太阳能保证率 / 供热 / 光伏/光热复合系统

Key words

ground source geothermal heat pumps / solar cells / solar fraction / space heating / photovoltaic/thermal hybrid system

引用本文

导出引用
刘仙萍, 田东, 雷豫豪, 郝小礼, 李大鹏. 光伏/光热-地源热泵联合供热系统运行性能研究[J]. 太阳能学报. 2022, 43(9): 88-97 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0172
Liu Xianping, Tian Dong, Lei Yuhao, Hao Xiaoli, Li Dapeng. PERFORMANCE ANALYSIS FOR SOLAR PHOTOVOLTAIC/THERMAL-GROUND SOURCE HEAT PUMP HYBRID HEATING SYSTEM[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 88-97 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0172
中图分类号: TK519   

参考文献

[1] 刘仙萍, 饶政华, 廖胜明. 太阳能光伏/光热复合集热器能量转换性能的数值模拟[J]. 中南大学学报(自然科学版), 2013, 44(6): 2554-2560.
LIU X P, RAO Z H, LIAO S M.Numerical simulation of energy conversion performance for hybrid photovoltaic/thermal solar collector[J]. Journal of Central South University(science and technology), 2013, 44(6): 2554-2560.
[2] BAKKER M, ZONDAG H A, ELSWIJK M J, et al.Performance and costs of a roof-sized PV/thermal array combined with a ground coupled heat pump[J]. Solar energy, 2005, 78(2): 331-339.
[3] GUO J Y, BILBAO J I, SPROUL A B.A novel solar cooling cycle - a ground coupled PV/T desiccant cooling (GPVTDC) system with low heat source temperatures[J]. Renewable energy, 2020, 162: 1273-1284.
[4] ENTCHEV E, YANG L, GHORAB M, et al.Energy, economic and environmental performance simulation of a hybrid renewable microgeneration system with neural network predictive control[J]. Alexandria engineering journal, 2018, 57(1): 455-473.
[5] ENTCHEV E, YANG L, GHORAB M, et al.Performance analysis of a hybrid renewable microgeneration system in load sharing applications[J]. Applied thermal engineering, 2014, 71(2): 697-704.
[6] CANELLI M, ENTCHEV E, SASSO M, et al.Dynamic simulations of hybrid energy systems in load sharing application[J]. Applied thermal engineering, 2015, 78: 315-325.
[7] ABU-RUMMAN M, HAMDAN M, AYADI O.Performance enhancement of a photovoltaic thermal (PVT) and ground-source heat pump system[J]. Geothermics, 2020, 85: 101809.
[8] XIA L, MA Z J, KOKOGIANNAKIS G, et al.A model-based design optimization strategy for ground source heat pump systems with integrated photovoltaic thermal collectors[J]. Applied energy, 2018, 214: 178-190.
[9] SOMMERFELDT N, MADANI H.In-depth techno-economic analysis of PV/Thermal plus ground source heat pump systems for multi-family houses in a heating dominated climate[J]. Solar energy, 2019, 190: 44-62.
[10] GURLER T, ELMER T, CUI Y L, et al.Experimental investigation of a novel PVT/heat pump system for energy-efficient poultry houses[J]. International journal of low-carbon technologies, 2018, 13(4): 404-413.
[11] 徐国英, 张小松, 赵善国. 平板型太阳能光伏/光热一体化热泵热水系统特性[J]. 化工学报, 2012, 63(S2): 136-141.
XU G Y, ZHANG X S, ZHAO S G.Performance of flat-plate PV/T integrated heat pump water heating system[J]. CIESC journal, 2012, 63(S2): 136-141.
[12] CAI J J, QUAN Z H, LI T Y, et al.Performance study of a novel hybrid solar PV/T ground-source heat pump system[J]. Procedia engineering, 2017, 205: 1642-1649.
[13] GB 50736—2012, 民用建筑供暖通风与空气调节设计规范[S].
GB 50736—2012, Design code for heating ventilation and air conditioning of civil buildings[S].
[14] GBT 50176—2016, 民用建筑热工设计规范[S].
GBT 50176—2016, Code for thermal design of civil buildings[S].
[15] GB50366—2009, 地源热泵系统工程技术规范(2009版)[S].
GB50366—2009, Technical code for ground-source heat pump system (2009 Ed.)[S].
[16] KÄMPF J H. On the modelling and optimisation of urban energy fluxes[D]. Lausanne, Switzerland: École Polytechnique Fédérale de Lausanne, 2009.
[17] 纪宇乔. 严寒地区深地埋管热泵运行状态土壤平均温度研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
JI Y Q.The study on soil average temperature of GSHP system with deep heat exchanger operating in extreme cold area[D]. Harbin: Harbin Engineering University, 2018.

基金

湖南省自然科学基金(2017JJ3090); 湖南省教育厅资助科研项目(19A180; 17C0649); 湖南科技大学科技项目(E56125; 902-G31803)

PDF(3871 KB)

Accesses

Citation

Detail

段落导航
相关文章

/