提出一种基于太阳能热风供暖系统的多级相变通风吊顶新型供暖末端。建立多级相变太阳能通风吊顶传热数值模型,对比研究了单级、两级和三级相变太阳能通风吊顶的蓄放热特性,分析相变材料的长度配比、空气流速对供暖末端蓄放热性能的影响规律。研究结果表明,与采用单一相变材料的通风吊顶相比,多级相变太阳能通风吊顶在蓄放热过程中出口平均温度差异更小。相变蓄热级数为3时,通风吊顶的蓄、放热效率及相变材料利用率改善最大,分别为6.5%、7.9%和25.1%,各级相变材料长度的配比为1∶1∶1时,蓄、放热效率及相变材料利用率最佳,分别为51.0%、88.7%和93.9%。空气流速不宜大于1.6 m/s,在保证供暖效果的前提下可适当减小空气流速。
Abstract
A new type of multistage phase-change solar ventilation ceiling(MPCSVC) based on solar hot air heating system is investigated in this paper. Numerical model of MPCSVC was established, and the heat charging and discharging characteristics of single-stage, two-stage and three-stage phase change solar ventilation ceiling were compared. The effects of the proportions of phase change material(PCM) and air velocity on the heat storage and release performance were analyzed. The results show that compared with the ventilation ceiling with single PCM, the average outlet temperature difference of that with MPCSVC is smaller in the heat storage and release process. In addition, the heat charging and discharging efficiency and the utilization rate of PCM for the three-stage MPCSVC are improved up to 6.5%, 7.9% and 25.1%, respectively. The optimal length ratio of PCM in MPCSVC is 1∶1∶1, and the heat charging and discharing efficiency and the utilization rate of PCM are 51.0%, 88.7% and 93.9%, respectively. The air velocity should not be larger than 1.6 m/s, and the air velocity can be appropriately reduced under the premise of ensuring the heating effect.
关键词
太阳能 /
相变材料 /
蓄热 /
数值模拟 /
热性能
Key words
solar energy /
phase change materials /
thermal energy storage /
numerical simulation /
thermal performance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] NORTON B.Solar energy storage[M]. London: Springer, 1992: 71-80.
[2] 张寅平, 胡汉平, 孔祥冬, 等. 相变贮能—理论和应用[M]. 合肥: 中国科学技术大学出版社, 1996.
ZHANG Y P, HU H P, KONG X D, et al.Phase change energy storage: Theory and application[M]. Hefei: China University of Science and Technology Press, 1996.
[3] ADINE H A, QARNIA H E.Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials[J]. Applied mathematical modelling, 2009(33): 2132-2144.
[4] 阚荣强, 李隆键, 崔文智, 等. 太阳能热风相变蓄热采暖系统实验研究[J]. 重庆理工大学学报, 2019, 33(11): 168-172.
KAN R Q, LI L J, CUI W Z, et al.Experimental study on hot air PCM thermal storage system for building heating[J]. Journal of Chongqing University of Technology, 2019, 33(11): 168-172.
[5] 刘馨, 冯国会, 黄凯良. 太阳能空气集热器和相变储能墙复合采暖系统分析[J]. 储能科学与技术, 2015, 4(6): 632-637.
LIU X, FENG G H, HUANG K L.Integration of solar air collector with phase change material wall for a heating system[J]. Energy storage science and technology, 2015, 4(6): 632-637.
[6] FARID M M, KHALAF A N.Performance of direct contact latent heat storage units with two hydrated salts[J]. Solar energy, 1994, 52(2): 179-189.
[7] FARID M, ATSUSHI K.Thermal performance of a heat storage module using PCMs with different melting temperatures: mathematical modeling[J]. Journal of solar energy engineering, 1989, 111(2): 152-157.
[8] 于丹, 曹勇, 曾范梅. 组合式相变材料换热器储热速率的实验研究[J]. 暖通空调, 2008(5): 65-67.
YU D, CAO Y, ZENG F M.Experiment of the thermal charging rates of a heat storage exchanger using multiple phase change materials[J]. HV&AC, 2008(5): 65-67.
[9] LI X Y, LIU Y, WANG X L, et al.Investigation on the charging process of a multi-PCM latent heat thermal energy storage unit for use in conventional air-conditioning systems[J]. Energy, 2018, 150: 591-600.
[10] MOSAFFA A H, RSHI L G, FERREIRA C, et al.Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications[J]. Renewable energy, 2014, 68: 452-458.
[11] LIU S L, MURIEL I, ASHISH S.Numerical study on the performance of an air-multiple PCMs unit for free cooling and ventilation[J]. Energy and buildings, 2017, 151: 520-533.
[12] MURIEL I, LIU S L, ASHISH S.Experimental study on the thermal performance of air-PCM unit[J]. Building and environment, 2016, 105: 128-139.
[13] 杨世铭, 陶文铨. 传热学[M]. 第4版. 北京: 高等教育出版社, 2006.
YANG S M, TAO W Q.Heat transfer[M]. 4th Edition. Beijing: Higher Education Press, 2006.
[14] 陈超, 蹇瑞欢, 焦庆影,等. 新型定形板状相变材料的蓄/放热特性[J]. 太阳能学报, 2005, 26(6): 857-862.
CHEN C, JIAN R H, JIAO Q Y, et al.Numerical and experimental analysis on heat-storage and discharge characteristics with form-stable PCM[J]. Acta energiae solaris sinica, 2005, 26(6): 857-862.
[15] 杨兆晟. 低温梯级相变蓄热器传热特性及优化研究[D]. 北京: 北京建筑大学, 2020.
YANG Z S.Study on heat transfer characteristics and optimization of low temperature cascaded phase change thermal storage device[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020.
[16] SUN W C, HUANG R, LING Z Y, et al.Numerical simulation on the thermal performance of a PCM-containing ventilation system with a continuous change in inlet air temperature[J]. Renewable energy, 2020, 145: 1608-1619.
[17] ELFEKY K E, AHMED N, WANG Q.Numerical comparison between single PCM and multi-stage PCM based high temperature thermal energy storage for CSP tower plants[J]. Applied thermal engineering, 2018, 139: 609-622.
[18] 赵耀. 相变材料及梯级系统传热储热特性的理论与实验研究[D]. 上海: 上海交通大学, 2018.
ZHAO Y.Theoretical and experimental study on the heat transfer and storage characteristics of phase chang materials and cascaded systems[D]. Shanghai: Shanghai Jiaotong University, 2018.
[19] YUAN W Q, JI J, MODJINOU M, et al.Numerical simulation and experimental validation of the solar photovoltaic/thermal system with phase change material[J]. Applied energy, 2018, 232: 715-727.
[20] 方铭, 陈光明. 组合式相变材料组分配比与储热性能研究[J]. 太阳能学报, 2007, 28(3): 304-308.
FANG M, CHEN G M.Influence of mass fraction of multiple phase change materials on the performance of a latent thermal energy storage system[J]. Acta energiae solaris sinica, 2007, 28(3): 304-308.
基金
西部绿色建筑国家重点实验室自主研究课题(LSZZ202105); 陕西省自然科学基础研究基金青年人才项目(2019JQ-768); 国家自然科学基金面上项目(51878535)