碟式聚光器和塔式聚光器均是点聚光系统,为了用月光法间接测量塔式聚光系统的聚光比分布,适宜用聚光稳定的碟式聚光器研究不同月相的光源亮度分布对聚光比分布的影响。主要建立月光下碟式聚光器的聚光比分布计算模型,首先依据拍摄的月相灰度图像建立分块均匀的光源亮度分布模型,再基于三维激光扫描点云数据生成准确的反射镜面形;在光线追迹过程中均匀采样镜面上的反射点,且考虑聚光器的跟踪误差;镜面的光学误差与光源的亮度分布合并为等效的光源亮度分布。模拟聚光比分布与实验聚光比分布的余弦相似度α>95%,光学模型准确性高。
Abstract
In order to indirectly measure the flux density distribution of the solar tower concentrator by concentrating the moonlight, a solar dish concentrator as an optical stable point-focusing system should be used to investigate the effect of moon shapes on concentration ratio distribution(CRD). This paper presents a new simulation model for the moonlight CRD of the dish concentrator. In this simulation model, a blocking non-circular moon-shape model for the changing moon has been established using photographed moon images. The laser-scanned point cloud data of mirrors is analyzed for the accurate mirror surface. The reflected points are sampled uniformly on the mirror surface. The tracking error of the concentrator is also considered in this simulation model. The mirror error model and the moon shape model are combined into the equivalent moon shape. The simulated CRD images have good cosine similarities to the experimental moonlight images, the cosine similarity α is always above 95%.
关键词
聚光比 /
跟踪误差 /
碟式聚光器 /
月光 /
点云数据
Key words
concentration ratio /
tracking error /
dish concentrator /
moonlight /
point cloud data
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ULMER S, REINALTER W, HELLER P, et al.Beam characterization and improvement with a flux mapping system for dish concentrators[J]. Journal of solar energy engineering, 2002, 124(2): 182-188
[2] ULMER S, LÜPFERT E, PFÄNDER M, et al. Calibration corrections of solar tower flux density measurements[J]. Energy, 2004, 29(5-6): 925-933.
[3] HISADA T, MII H, NOGUCHI C, et al.Concentration of the solar radiation in a solar furnace[J]. Solar energy, 1957, 1(4): 14-16.
[4] ROOSENDAAL C, SWANEPOEL J, ROUX W G L. Performance analysis of a novel solar concentrator using lunar flux mapping techniques[J]. Solar energy, 2020, 206: 200-215.
[5] LOVEGROVE K.A new 500 m2 paraboloidal dish solar concentrator[J]. Solar energy, 2011, 85(4): 620-626.
[6] SALOMÉ A, CHHEL F, FLAMANT G, et al.Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: application to THEMIS solar tower[J]. Solar energy, 2013, 94: 352-366.
[7] XIAO G, YANG T F, NI D, et al.A model-based approach for optical performance assessment and optimization of a solar dish[J]. Renewable energy, 2017, 100: 103-113.
[8] 王楠, 王心愉, 孙飞虎, 等. 塔式太阳能热发电站圆月夜聚光实验研究[J]. 新能源进展, 2019, 7(1): 25-33.
WANG N, WANG X Y, SUN F H, et al.Experimental study of moonlight concentration of a solar tower power plant in the full moon night[J]. Advances in new and renewable energy, 2019, 7(1): 25-33.
[9] 刘颖, 戴景民, 孙晓刚. 抛物面型聚光器聚焦光斑能流密度分布的计算[J]. 太阳能学报, 2007, 28(10): 1049-1054.
LIU Y, DAI J M, SUN X G, et al.Calculation method of flux distribution focal plane in parabolic concentrators[J]. Acta energiae solaris sinica, 2007, 28(10): 1049-1054.
[10] SCHUBNELL M .Sunshape and its influence on the flux distribution in imaging solar concentrators[J]. Journal of solar energy engineering, 1992, 114(4): 260-266.
[11] BUIE D, MONGER A G, DEY C J.Sunshape distributions for terrestrial solar simulations[J]. Solar energy, 2003, 74(2): 113-122.
[12] GUO M H, WANG Z F, ZHANG J H, et al.Accurate altitude-azimuth tracking angle formulas for a heliostat with mirror-pivot offset and other fixed geometrical errors[J]. Solar energy, 2011, 85(5): 1091-1100.
[13] SUN F H, GUO M H, WANG Z F, et al.Study on the heliostat tracking correction strategies based on an error-correction model[J]. Solar energy, 2015, 111: 252-263.
基金
国家自然科学基金(51976058); 中国科学院洁净能源创新研究院-榆林学院联合基金(YLU-DNL 2021008)