模拟PEM燃料电池环境下质子交换膜损伤研究

杨卫战, 谈金祝, 刘嘉然, 夏威, 王燕康

太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 493-498.

PDF(1647 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1647 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 493-498. DOI: 10.19912/j.0254-0096.tynxb.2021-0220

模拟PEM燃料电池环境下质子交换膜损伤研究

  • 杨卫战, 谈金祝, 刘嘉然, 夏威, 王燕康
作者信息 +

STUDY ON DEGRADATION OF PROTON EXCHANGE MEMBRANE IN SIMULATED PEM FUEL CELL ENVIRONMENTS

  • Yang Weizhan, Tan Jinzhu, Liu Jiaran, Xia Wei, Wang Yankang
Author information +
文章历史 +

摘要

该文研究在模拟燃料电池环境下的质子交换膜(PEM)材料的损伤情况。选用2种溶液模拟质子交换膜燃料电池(PEMFC)环境,一种是接近燃料电池实际运行环境溶液,称为正规溶液(RS),另一种则为加速试样老化的加速持久性(ADT)溶液。采用衰减全反射傅里叶变换红外光谱(ATR-FTIR)和X射线光电子能谱(XPS)技术对老化试样表面的化学成分变化进行研究;同时,采用机械拉伸性能试验对老化前后试样进行研究。试验结果表明,在模拟PEMFC环境下,随着老化时间的增加,试样表面分子结构和化学成分发生明显变化,抗拉强度和断裂伸长率降低,试样材料损伤加剧。

Abstract

In this work, in order to investigate the material degradation of PEM, the PEM was exposed to the simulated PEMFC environments. In order to simulate PEMFC environments, two solutions were selected. One of the solutions was called as the regular solution(RS), close to the real PEM fuel cell environment,and another solution was an accelerated durability test(ADT)solution for the accelerated aging tests. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) were used to study the surface chemistry change of aging samples. The mechanical properties tests were conducted for the samples before and after aging. The experimental results show that with the increase of aging time, the molecular structure and chemical composition of the sample surface change significantly, the tensile strength and elongation at break decreased, and the degradation of the sample material increased.

关键词

质子交换膜燃料电池 / 质子交换膜 / 老化 / 损伤

Key words

proton exchange membrane fuel cells / proton exchange membrane / aging / degradation

引用本文

导出引用
杨卫战, 谈金祝, 刘嘉然, 夏威, 王燕康. 模拟PEM燃料电池环境下质子交换膜损伤研究[J]. 太阳能学报. 2022, 43(9): 493-498 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0220
Yang Weizhan, Tan Jinzhu, Liu Jiaran, Xia Wei, Wang Yankang. STUDY ON DEGRADATION OF PROTON EXCHANGE MEMBRANE IN SIMULATED PEM FUEL CELL ENVIRONMENTS[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 493-498 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0220
中图分类号: TM911.42   

参考文献

[1] 侯明, 衣宝廉. 燃料电池技术发展现状与展望[J]. 电化学, 2012, 18(1): 1-13.
HOU M, YI B L.Progress and perspective of fuel cell technology[J]. Journal of electrochemistry, 2012, 18(1):1-13.
[2] SHAN J, LIN R, XIA S X, et al.Local resolved investigation of PEMFC performance degradation mechanism during dynamic driving cycle[J]. International journal of hydrogen energy, 2016, 41(7): 4239-4250.
[3] BORUP R, MEYERS J, PIVOVAR B, et al.Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chemical reviews, 2007, 107(10): 3904-3951.
[4] ZHAO J, LI X G.A review of polymer electrolyte membrane fuel cell durability for vehicular applications: Degradation modes and experimental techniques[J]. Energy conversion and management, 2019, 199: 112022-102043.
[5] SHI S W, DURSCH T J, BLAKE C, et al.Impact of hygrothermal aging on structure/function relationship of perfluorosulfonic-acid membrane[J]. Journal of polymer science part B: polymer physics, 2016, 54(5): 570-581.
[6] 朱京宇, 谈金祝, 潘清, 等. 镁离子对质子交换膜性能的影响[J]. 高分子材料科学与工程, 2020, 36(9): 144-149.
ZHU J Y, TAN J Z, PAN Q, et al.Effect of magnesium ions on performance of proton exchange[J]. Polymer materials science & engineering, 2020, 36(9): 144-149.
[7] KINUMOTO T, INABA M, NAKAYAMA Y, et al.Durability of perfluorinated ionomer membrane against hydrogen peroxide[J]. Journal of power sources, 2006, 158(2): 1222-1228.
[8] SINGH Y, WHITE R T, NAJM M, et al.Tracking the evolution of mechanical degradation in fuel cell membranes using 4D in situ visualization[J]. Journal of power sources, 2019, 412: 224-237.
[9] SUN X Y, SHI S W, FU Y J, et al.Embrittlement induced fracture behavior and mechanisms of perfluorosulfonic-acid membranes after chemical degradation[J]. Journal of power sources, 2020, 453:227893.
[10] LI G, TAN J Z, GONG J M.Degradation of the elastomeric gasket material in a simulated and four accelerated proton exchange membrane fuel cell environments[J]. Journal of power sources, 2012, 205: 244-251.
[11] 殷金鹏, 谈金祝, 张武建, 等. 模拟PEM燃料电池环境下垫片材料的机械性能研究[J]. 太阳能学报, 2018, 39(3): 686-691.
YIN J P, TAN J Z, ZHANG W J, et al.Study on mechanical properties of the gasket material in simulated PEM fuel cell environments[J]. Acta energiae solaris sinica, 2018, 39(3): 686-691.
[12] WANG Z Q,TAN J Z,WANG Y K, et al.Chemical and mechanical degradation of silicone rubber under two compression loads in simulated proton-exchange membrane fuel-cell environments[J]. Journal of applied polymer science, 2019, 136(33): 47855.
[13] TAN J Z, CHAO Y J, YANG M, et al.Chemical and mechanical stability of a silicone gasket material exposed to PEM fuel cell environment[J]. International journal of hydrogen energy, 2011, 36(2): 1846-1852.
[14] TAN J Z, CHAO Y J, LEE W K, et al.Degradation of gasket materials in a simulated fuel cell environment[C]//Proceedings of the ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology, California, USA, 2006:233-241.

PDF(1647 KB)

Accesses

Citation

Detail

段落导航
相关文章

/