建立日光温室计算传热模型,以室内空气温度和墙体内表面温度为指标,通过实验方法验证了所建立的传热模型准确性,最后分析相变材料相变温度、相变焓、导热系数、密度等热物性对室内最低温度和相变蓄热率的影响规律,确定被动式相变蓄热墙体和主-被动式相变蓄热墙体的最佳相变材料热物性,阐明了实际应用时相变材料选择原则。研究结果表明,所建立的日光温室传热模型具有较高准确性,可用于日光温室墙体相变材料热物性优化;主-被动式相变蓄热墙体最佳相变材料的相变温度为27 ℃,相变焓为200 kJ/kg,导热系数为0.35 W/(m·K),密度为440 kg/m3,被动式相变蓄热墙体最佳相变材料的相变温度为26 ℃,相变焓为200 kJ/kg,导热系数为0.35 W/(m·K),密度为792 kg/m3;最佳相变材料热物性应用时,2种墙体室内最低温度均可达到15.0 ℃,但是被动式相变蓄热墙体的相变蓄热率较主-被动式相变蓄热墙体减小29.5%。本研究可为相变材料在日光温室的高效利用提供参考。
Abstract
The heat transfer calculation model of solar greenhouse was established. Its accuracy was validated by experimental methods with the indicators of the indoor air temperature and the inner surface temperature of the wall. Finally, the influence of different thermophysical properties of phase change materials, namely phase change temperature, heat of fusion, thermal conductivity and density, on the indoor minimum temperature and the phase change heat storage rate was analyzed, then the optimal thermophysical properties of phase change materials applied for both phase change heat storage walls were determined, and the selection principle of phase change material in practical application was clarified. The results show that the developed heat transfer calculation model of solar greenhouse has a high accuracy, with the average error of indoor air temperature of 0.31 ℃ and the average error of inner surface temperature of 1.34 ℃. The developed heat transfer calculation model can be used for the optimal thermophysical properties of phase change materials used in solar greenhouse walls. The optimal thermophysical properties of phase change material applied for the active-passive phase change heat storage wall included the phase change temperature of 27 ℃, the phase change enthalpy of 200 kJ/kg, the thermal conductivity of 0.35 W/(m·K), the density of 440 kg/m3. The optimal thermophysical properties of phase change material applied for the passive phase change heat storage wall included the phase change temperature of 26 ℃, the phase change enthalpy of 200 kJ/kg, the thermal conductivity of 0.35 W/(m·K), the density of 792 kg/m3. The minimum indoor air temperature of the solar greenhouse with the optimal phase change material could reach 15.0 ℃, but the phase change heat storage rate of the passive phase change heat storage wall was 46.4%, which was 29.5% lower than that of the active-passive phase change heat storage wall. This study can provide a reference for the application of phase change materials in solar greenhouse.
关键词
太阳能建筑 /
蓄热 /
相变材料 /
墙体 /
热物性 /
日光温室
Key words
solar buildings /
heat storage /
phase change materials /
wall /
thermophysical property /
solar greenhous
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈超, 凌浩恕, 于楠, 等. 相变材料蓄热系数的计算方法[J]. 太阳能学报, 2018, 39(8): 2267-2272.
CHEN C, LING H S, YU N, et al.Calculation method of heat storage coefficient of phase change material[J]. Acta energiae solaris sinica, 2018, 39(8): 2267-2272.
[2] 陈超, 李娜, 凌浩恕. 蔬菜高产增效的日光温室绿色建筑设计新理念[J]. 农业工程技术, 2015(12): 35-39.
CHEN C, LI N, LING H S.New concept of green building design of solar greenhouse with high yield and efficiency of vegetables[J]. Agricultural engineering technology, 2015(12): 35-39.
[3] 管勇, 陈超, 凌浩恕, 等. 日光温室三重结构相变蓄热墙体传热特性分析[J]. 农业工程学报, 2013, 29(21):166-173.
GUAN Y, CHEN C, LING H S, et al.Analysis of heat transfer properties of three-layer wall with phase-change heat storage in solar greenhouse[J]. Transactions of the CSAE, 2013, 29(21): 166-173.
[4] LING H S, CHEN C, WEI S, et al.Effect of phase change materials on indoor thermal environment under different weather conditions and over a long time[J]. Applied energy, 2015, 140: 329-337.
[5] 李鹏, 张亚红, 白青, 等. 基于日光温室相变材料的梯形墙体热特性分析[J]. 中国农业气象, 2019, 40(10): 620-629.
LI P, ZHANG Y H, BAI Q, et al.Analysis on thermal characteristics of trapezoidal wall based on phase change materials in solar greenhouse[J]. Chinese journal of agrometeorology, 2019, 40(10): 620-629.
[6] 周莹, 王双喜, 刘中华, 等. 基于ANSYS的日光温室复合相变保温墙体的模拟研究[J]. 太阳能学报, 2020, 41(4): 113-122.
ZHOU Y, WANG S X, LIU Z H, et al.Simulation study on composite phase change thermal insulation walls in solar greenhouse based on ANSYS[J]. Acta energiae solaris sinica, 2020, 41(4): 113-122.
[7] 时盼盼, 吕建, 孙于萍, 等. 日光温室相变蓄热墙体最佳组合厚度的模拟研究[J]. 太阳能学报, 2019, 40(2): 496-504.
SHI P P, LYU J, SUN Y P, et al.Simulation study on optimum composite thickness of phase change heat storagewall[J]. Acta energiae solaris sinica, 2019, 40(2): 496-504.
[8] CHEN W, LIU W.Numerical simulation of the airflow and temperature distribution in a lean-to greenhouse[J]. Renewable energy, 2006, 31(4): 517-535.
[9] GUAN Y, CHEN C, HAN Y Q, et al.Experimental and modelling analysis of a three-layer wall with phase-change thermal storage in a Chinese solar greenhouse[J]. Journal of building physics, 2015, 38(6): 548-559.
[10] 许红军, 曹晏飞, 李彦荣, 等. 基于CFD的日光温室墙体蓄热层厚度的确定[J]. 农业工程学报, 2019, 35(4): 183-192.
XU H J, CAO Y F, LI Y R, et al.Determination of thickness of thermal storage layer of solar greenhouse wall based on CFD[J]. Transactions of the CSAE, 2019, 35(4): 183-192.
[11] 凌浩恕, 陈超, 陈紫光, 等. 日光温室带竖向空气通道的太阳能相变蓄热墙体体系[J]. 农业机械学报, 2015, 46(3): 336-343.
LING H S, CHEN C, CHEN Z G, et al.Performance of phase change material wall with vertical air channels integrating solar concentrators[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 336-343.
[12] 鲍恩财, 曹晏飞, 邹志荣, 等. 不同结构主动蓄热墙体日光温室传热特性[J]. 农业工程学报, 2019, 35(3): 189-197.
BAO E C, CAO Y F, ZOU Z R, et al.Characteristic of heat transfer for active heat storage wall with different structures in Chinese solar greenhouse[J]. Transactions of the CSAE, 2019, 35(3): 189-197.
[13] 张勇, 高文波, 邹志荣. 日光温室主动蓄热后墙传热CFD模拟及性能试验[J]. 农业工程学报, 2015, 31(5): 203-211.
ZHANG Y, GAO W B, ZOU Z R.Performance experiment and CFD simulation of heat exchange in solar greenhouse with active thermal storage back-wall[J]. Transactions of the CSAE, 2015, 31(5): 203-211.
[14] 王昭, 陈振东, 邹志荣, 等. 青海型主动蓄热日光温室应用性能分析[J]. 中国农业大学学报, 2017, 22(8): 116-123.
WANG Z, CHEN Z D, ZOU Z R, et al.Application performance analysis on active heating storage greenhouse of Qinghai style[J]. Journal of China Agricultural University, 2017, 22(8): 116-123.
[15] 李鹏, 张亚红, 崔海, 等. 相变蓄热系统对日光温室热环境及草莓产量和品质的影响[J]. 安徽农业大学学报, 2020 , 47(4): 648-654.
LI P, ZHANG Y H, CUI H, et al.Effect of phase change thermal storage system on solar greenhouse thermal environment and the yield and quality of strawberry[J]. Journal of Anhui Agricultural University, 2020, 47(4): 648-654.
[16] 李天来. 日光温室蔬菜栽培理论与实践[M]. 北京: 中国农业出版社, 2014.
LI T L.Theory and practice on vegetable cultivation in solar greenhouse[M]. Beijing: China Agriculture Press, 2014.
[17] KALNÆS S E, JELLE B P. Phase change materials and products for building applications:a state-of-the-art review and future research opportunities[J]. Energy and buildings, 2015, 94: 150-176.
[18] ZHANG P, XIAO X, MA Z W.A review of the composite phase change materials:fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied energy, 2016, 165: 472-510.
[19] SUN X, ZHANG Q, MEDINA M A, et al.Parameter design for a phase change material board installed on the inner surface of building exterior envelopes for cooling in China[J]. Energy conversion and management, 2016, 120: 100-108.
基金
新疆维吾尔自治区公益性科研院所基本科研业务经费(ky2019025); 国家自然科学基金(52006223)