基于多失效模式的海上浮式风电机组结构可靠性研究

石嫄嫄, 和庆冬, 吴衍剑, 杜君峰, 张敏

太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 236-241.

PDF(3841 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3841 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 236-241. DOI: 10.19912/j.0254-0096.tynxb.2021-0224

基于多失效模式的海上浮式风电机组结构可靠性研究

  • 石嫄嫄1, 和庆冬2, 吴衍剑3, 杜君峰1, 张敏1
作者信息 +

MULTI-MODE RELIABILITY ANALYSIS ON STRUCTURAL OF OFFSHORE FLOATING WIND TURBINE

  • Shi Yuanyuan1, He Qingdong2, Wu Yanjian3, Du Junfeng1, Zhang Min1
Author information +
文章历史 +

摘要

为准确评估浮式海上风电机组结构服役安全性,提出一种基于多失效模式的可靠性评估方法。以美国国家可再生能源实验室(NREL)研制的5 MW浮式风力发电机组OC3 Hywind为目标模型,根据不同海况下浮式风电机组结构耦合动力响应分析结果,分析关键结构的不同失效模式,最后基于多失效模式的可靠性评估方法计算整体系统可靠性。结果表明,考虑串联系统,基于多失效模式可靠性分析方法得到的海上浮式风电机组结构整体的失效概率远高于单一模式失效概率,采用此方式评估结构可靠度更加安全准确。

Abstract

To ensure the safety of offshore floating wind turbine system, a novel the liability assessment method based on comprehensive multi-failure modes is proposed in this paper. The OC3 floating spar(Hywind) with 5 MW baseline wind turbine developed by American National Renewable Energy Laboratory(NREL) is applied as the target model. The coupled dynamic responses of OC3-Hywind are simulated under various sea states. And the reliabilities of several critical members under both ultimate strength failure and fatigue failure modes are calculated respectively. Then, the multi-mode reliability assessment is applied to calculate the structural reliability. The results demonstrate that the failure probability of the offshore floating wind turbine by the multi-mode reliability assessment is greater than that of any single mode. It is more efficient and accurate to estimate the structural reliability by this method.

关键词

海上风电 / 风电机组 / 可靠性分析 / 失效模式 / 疲劳损伤 / 极限强度

Key words

offshore wind power / wind turbines / reliability analysis / failure modes / fatigue damage / ultimate strength

引用本文

导出引用
石嫄嫄, 和庆冬, 吴衍剑, 杜君峰, 张敏. 基于多失效模式的海上浮式风电机组结构可靠性研究[J]. 太阳能学报. 2022, 43(9): 236-241 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0224
Shi Yuanyuan, He Qingdong, Wu Yanjian, Du Junfeng, Zhang Min. MULTI-MODE RELIABILITY ANALYSIS ON STRUCTURAL OF OFFSHORE FLOATING WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 236-241 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0224
中图分类号: TK513.5   

参考文献

[1] KONG C, BANG J, SUGIYAMA Y.Structural investigation of composite wind turbine blade considering various load cases and fatigue life[J]. Energy, 2005, 30(11-12): 2101-2114.
[2] 叶谦, 何勇, 金伟良. 半潜式平台结构整体可靠性分析方法[J]. 海洋工程, 2011, 29(3): 31-36.
YE Q, HE Y, JIN W L.System reliability analysis of semisubmersible platform[J]. The ocean engineering, 2011, 29(3): 31-36.
[3] DU J F, CHANG A T, WANG S Q, et al.Multi-mode reliability analysis of mooring system of deep-water floating structures[J]. Ocean engineering, 2019, 192: 106517.
[4] 龚顺风. 海洋平台结构碰撞损伤及可靠性与疲劳寿命评估研究[D]. 杭州: 浙江大学, 2003.
GONG S F.Study on collision damages, reliability and fatigue life assessment of offshore platform structures[D]. Hangzhou: Zhejiang University, 2003.
[5] American Petroleum Institute(API). Recommended practice for design and analysis of station keeping systems for floating structures: exploration and production department[S]. API Recommended Practice2SK(RP2SK), 2005.
[6] WILKINS E W C. Cumulative damage in fatigue[C]//Colloquium on Fatigue, Stockholm, Sweden, 1955: 321-332.
[7] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. NREL/TP-500-38060, 2009.
[8] JOHANNESSEN K, MELING T S, HAVER S.Joint distribution for wind and waves in the Northern North Sea[J]. International journal of offshore and polar engineering, 2002, 12(1): 1-8.
[9] GB 50135—2006,高耸结构设计规范[S].
GB 50135—2006, Code for design of high-rising structures[S].

基金

国家自然科学基金(51879247); 山东省自然科学基金(ZR2018MEE049)

PDF(3841 KB)

Accesses

Citation

Detail

段落导航
相关文章

/