临近空间太阳电池模型修正与发电量预测研究

高阳, 徐国宁, 王生, 李兆杰, 蔡榕, 杨燕初

太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 80-87.

PDF(4442 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4442 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 80-87. DOI: 10.19912/j.0254-0096.tynxb.2021-0225

临近空间太阳电池模型修正与发电量预测研究

  • 高阳1,2, 徐国宁1,2, 王生1,2, 李兆杰1,2, 蔡榕1,2, 杨燕初1,2
作者信息 +

RESEARCH ON MODIFICATION OF NEAR SPACE SOLAR CELL MODEL AND POWER GENERATION FORECAST

  • Gao Yang1,2, Xu Guoning1,2, Wang Sheng1,2, Li Zhaojie1,2, Cai Rong1,2, Yang Yanchu1,2
Author information +
文章历史 +

摘要

由于在飞行过程中,温度、辐照度和倾角变化都会对临近空间飞行器上太阳电池的输出功率及效率产生影响,该文利用太阳光模拟器及薄型晶体硅太阳电池,进行多组测量实验,得到在不同温度、辐照度和倾角条件下,太阳电池的短路电流、开路电压等参数,并通过与模型仿真结果进行对比,对已有太阳电池电模型进行修正,得到更接近真实飞行工况的临近空间飞行器用薄型晶体硅太阳电池的模型。最后,基于修正后的模型通过仿真对太阳电池阵列在临近空间的全天发电功率变化趋势进行预测,可为临近空间飞行器用太阳电池阵列设计与功率预测提供重要参考。

Abstract

Since the changes of temperature, irradiance and inclination will affect the output power and efficiency of the solar cells on the aircraft during the flight, this article uses a solar simulator and standard thin crystalline silicon solar cells to conduct multiple sets of experimental measurements. Under different temperature, irradiance and inclination conditions, the short-circuit current, open circuit voltage and other parameters of the thin crystalline silicon solar cell are obtained, and compared with the simulation results through the model, the existing solar cell electrical model is corrected to get closer Model of thin crystalline silicon solar cell for stratospheric aircraft under real flight conditions. Finally, based on the revised model, the trend of all-day power generation of solar cell arrays in adjacent space is predicted through simulation, which provides an important reference for the design and power prediction of solar cell arrays for near space vehicles.

关键词

太阳电池 / 光伏发电系统 / 平流层飞艇 / 太阳能飞机 / 临近空间

引用本文

导出引用
高阳, 徐国宁, 王生, 李兆杰, 蔡榕, 杨燕初. 临近空间太阳电池模型修正与发电量预测研究[J]. 太阳能学报. 2022, 43(10): 80-87 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0225
Gao Yang, Xu Guoning, Wang Sheng, Li Zhaojie, Cai Rong, Yang Yanchu. RESEARCH ON MODIFICATION OF NEAR SPACE SOLAR CELL MODEL AND POWER GENERATION FORECAST[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 80-87 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0225
中图分类号: TM46   

参考文献

[1] CHU A, BLACKMORE M, OHOLENDT R, et al.A novel concept for stratospheric communications and surveillance: The starlight[C]//AIAA Balloon Systems Conference, Williamsburg, VA, USA, 2007: 2601.
[2] WANG W Q.Near-space vehicles: supply a gap between satellites and airplanes for remote sensing[J]. IEEE aerospace and electronic systems magazine, 2011, 26(4): 4-9.
[3] ZUO Z, CHENG L, WANG X, et al.Three-dimensional path-following backstepping control for an underactuated stratospheric airship[J]. IEEE transactions on aerospace and electronic systems, 2018, 55(3): 1483-1497.
[4] YUAN J, ZHU M, GUO X, et al.Trajectory tracking control for a stratospheric airship subject to constraints and unknown disturbances[J]. IEEE access, 2020, 8: 31453-31470.
[5] DU H F, ZHU W Y, WU Y F, et al.Effect of angular losses on the output performance of solar array on long-endurance stratospheric airship[J]. Energy conversion & management, 2017, 147: 135-144.
[6] YANG X, LIU D.Renewable power system simulation and endurance analysis for stratospheric airships[J]. Renewable energy, 2017, 113: 1070-1076.
[7] 朱炳杰, 杨希祥, 麻震宇, 等. 平流层飞艇太阳电池系统产能分析[J]. 国防科技大学学报, 2019, 41(1): 13-18.
ZHU B J, YANG X X, MA Z Y, et al.Power analysis of stratospheric airship’s solar array system[J]. Journal of National University of Defense Technology, 2019, 41(1): 13-18.
[8] SU J M, SONG B F.Curved surface renewable solar cell applied to near space airship energy system[C]//2008 International Conference on Electrical Machines and Systems, Wuhan, China, 2008: 2621-2626.
[9] 朴政国, 周京华. 光伏发电原理、技术及应用[M]. 北京: 机械工业出版社, 2020.
PIAO Z G, ZHOU J H.Principle, technology and application of photovoltaic power generation[M]. Beijing: China Machine Press, 2020.
[10] DOLARA A, LEVA S, MANZOLINI G.Comparison of different physical models for PV power output prediction[J]. Solar energy, 2015, 119: 83-99.
[11] HUMADA A M, HOIABRI M, MEKHILEF S, et al.Solar cell parameters extraction based on single and double-diode models: a review[J]. Renewable and sustainable energy reviews, 2016, 56: 494-509.
[12] 夏一峰, 许健伟, 朱金荣. 基于改进型变步长电导增量法的光伏最大功率跟踪控制[J]. 电气技术, 2019, 20(3): 29-34.
XIA Y F, XU J W, ZHU J R.The maximum power tracking control of PV is based on the incremental method of the improved variable-step conductance[J]. Electrical engineering, 2019, 20(3): 29-34.
[13] CHENG X T, XU X H, LIANG X G.Thermal simulation and experiment for an airship under low altitude environment[J]. Journal of astronautics, 2010, 31: 2417-2421
[14] LI J, LYU M, TAN D, et al.Output performance analyses of solar array on stratospheric airship with thermal effect[J]. Applied thermal engineering, 2016, 104: 743-750.
[15] LYU M, LI J, DU H, et al.Solar array layout optimization for stratospheric airships using numerical method[J]. Energy conversion and management, 2017, 135: 160-169.

基金

中国科学院战略性先导专项(临近空间科学实验系统XDA17020304)

PDF(4442 KB)

Accesses

Citation

Detail

段落导航
相关文章

/