基于神经网络的最优带宽风电并网自抗扰控制

周雪松, 杨子明, 马幼捷

太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 226-235.

PDF(2584 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2584 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 226-235. DOI: 10.19912/j.0254-0096.tynxb.2021-0240

基于神经网络的最优带宽风电并网自抗扰控制

  • 周雪松1,2, 杨子明1,2, 马幼捷1,2
作者信息 +

OPTIMAL BANDWIDTH ACTIVE DISTURBANCE REJECTION CONTROL FOR WIND TURBINE GRID-CONNECTION BASED ON NEURAL NETWORK

  • Zhou Xuesong1,2, Yang Ziming1,2, Ma Youjie1,2
Author information +
文章历史 +

摘要

为了提高风能转换系统在故障穿越期间直流母线电压的暂态特性,解决线性自抗扰控制(LADRC)中固定的带宽带来的观测器响应速度和系统抗干扰性之间的矛盾,在线性自抗扰控制(LADRC)的基础上提出一种基于神经网络的最优带宽线性自抗扰控制(LADRC-OB)策略。首先分析带宽对系统性能的影响,然后根据系统已知模型设计LADRC控制器,并利用BP神经网络算法通过直流母线电压的参考值与实际值之间的偏差调整网络的输出。而神经网络的输出为LADRC的2个重要参数——观测器带宽ω0和控制器带宽ωc,这可解决LADRC的参数整定问题。最后,将LADRC-OB应用于1.5 MW的风能转换系统仿真模型中,并与采用双闭环PI时的控制效果进行对比,验证LADRC-OB具有更好的控制特性。此外,还对LADRC-OB的稳定性进行分析。

Abstract

In order to improve the transient characteristics of DC bus voltage in wind energy conversion system during fault ride through, solve the contradiction between the response speed of the observer and the anti-interference performance of the system caused by the fixed bandwidth in the linear active disturbance rejection control(LADRC), the optimal bandwidth linear active disturbance rejection control based on neural network(LADRC-OB) is proposed based on LADRC. Firstly, the influence of bandwidth on the system performance is analyzed. Then the LADRC is designed according to the known model of the system, and the output of the network is adjusted by using BP neural network algorithm through the error between the reference value and the actual value of the DC bus voltage. The output of neural network is two important parameters of LADRC, observer bandwidth ω0 and controller bandwidth ωc. This also solves the problem of LADRC parameter setting. Finally, the LADRC-OB is applied to the simulation model of the 1.5 MW wind energy conversion system, and compared with the control effect of double closed-loop PI, it is verified that LADRC-OB has better control characteristics. In addition, the stability of LADRC-OB is analyzed.

关键词

风能 / 神经网络 / 变流器 / 线性自抗扰控制 / 最优带宽

Key words

wind power / neural networks / power converters / liner active disturbance rejection control / optimal bandwidth

引用本文

导出引用
周雪松, 杨子明, 马幼捷. 基于神经网络的最优带宽风电并网自抗扰控制[J]. 太阳能学报. 2022, 43(9): 226-235 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0240
Zhou Xuesong, Yang Ziming, Ma Youjie. OPTIMAL BANDWIDTH ACTIVE DISTURBANCE REJECTION CONTROL FOR WIND TURBINE GRID-CONNECTION BASED ON NEURAL NETWORK[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 226-235 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0240
中图分类号: TK81   

参考文献

[1] WANG A H, GANG H, QIU P, et al.Self-starting analysis of new energy system with wind power and energy storage[C]//Chinese Control Conference(CCC), Wuhan, China, 2018.
[2] 于洋, 徐政, 徐谦, 等. 永磁直驱式风机采用混合直流并网的控制策略[J]. 中国电机工程学报, 2016, 36(11): 2863-2870.
YU Y, XU Z, XU Q, et al.A control strategy for integration of permanent magnet direct-driven wind turbines through a hybrid HVDC system[J]. Proceedings of the CSEE, 2016, 36(11): 2863-2870.
[3] MUYEEN S M, TAKAHASHI R, MURATA T, et al.A variable speed wind turbine control strategy to meet wind farm grid code requirements[J]. IEEE transactions on power systems, 2010, 25(1): 331-340.
[4] HAQUE M E, SAW Y C, CHOWDHURY M M.Advanced control scheme for an IPM synchronous generator-based gearless variable speed wind turbine[J]. IEEE transactions on sustainable energy, 2014, 5(2): 354-362.
[5] ARANI M F M, MOHAMED Y A R I. Assessment and enhancement of a full-scale PMSG-based wind power generator performance under faults[J]. IEEE transactions on energy conversion, 2016, 31(2): 735-746.
[6] 中国电力科学研究院. 风电场接入电网技术规定(修订版)[S]. 北京: 国家电网公司, 2015.
China Electric Power Research Institute. Regulations on accessing power system technology to wind electric field in state grid (revised edition)[S]. Beijing: State Grid Corporation of China, 2015.
[7] LEE C T, HSU S W, CHENG P T.A low-voltage ride-through technique for grid-connected converters of distributed energy resources[J]. IEEE transactions on industry applications, 2011, 47(4): 1821-1832.
[8] DEY P, DATTA M, FERNANDO M, et al.Comparison of synchronous and stationary frame PI based flux weakening controls for DC-link overvoltage minimisation of WECS under grid fault[C]//IEEE Region 10 Conference, Marina Bay Sands, Singapore, 2016.
[9] GENCER A.Analysis and control of fault ride through capability improvement PMSG based on WECS using active crowbar system during different fault conditions[J]. Elektronika ir elektrotechnika, 2018, 24(2): 63-69.
[10] HUANG C J, ZHENG Z X, XIAO X Y, et al.Enhancing low-voltage ride-through capability of PMSG based on cost-effective fault current limiter and modified WTG control[J]. Electric power systems research, 2020, 185: 106358.
[11] 韩京清. 自抗扰控制技术[M]. 北京: 国防工业出版社, 2008.
HAN J Q.Active disturbance rejection control technique[M]. Beijing: National Defense Industry Press, 2008.
[12] 韩京清. 一类不确定对象的扩张状态观测器[J]. 控制与决策, 1995, 10(1): 85-88.
HAN J Q.Extended state observer for a class of uncertain plants[J]. Control and decision, 1995, 10(1): 85-88.
[13] HAN J Q.From PID to active disturbance rejection control[J]. IEEE transactions on industrial electronics, 2009, 56(3): 900-906.
[14] WU D, CHEN K.Frequency-domain analysis of nonlinear active disturbance rejection control via the describing function method[J]. IEEE transactions on industrial electronics, 2013, 60(9): 3906-3914.
[15] CHEN W H, YANG J, GUO L, et al.Disturbance-observer-based control and related methods—an overview[J]. IEEE transactions on industrial electronics, 2016, 63(2): 1083-1095.
[16] GAO Z Q.Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the 2003 American Control Conference, Denver, Colorado, USA: IEEE, 2003: 4989-4996.
[17] 袁东, 马晓军, 曾庆含, 等. 二阶系统线性自抗扰控制器频带特性与参数配置研究[J]. 控制理论与应用, 2013, 30(12): 1630-1640.
YUAN D, MA X J, ZENG Q H, et al.Research on frequency-band characteristics and parameters configuration of linear active disturbance rejection control for second-order systems[J]. Control theory & applications, 2013, 30(12): 1630-1640.
[18] 韩永强, 徐明忻, 孙碣, 等. 结合校正环节与LADRC的风电系统并网控制[J]. 电力系统及其自动化学报, 2020, 32(9): 120-127.
HAN Y Q, XU M X, SUN J, et al.Grid-connected control of wind power system with combination of correction link and LADRC[J]. Proceedings of the CSU-EPSA, 2020, 32(9): 120-127.
[19] 李爽, 王志新, 王国强, 等. 三电平海上风电柔性直流输电变流器的PID神经网络滑模控制[J]. 中国电机工程学报, 2012, 32(4): 20-29.
LI S, WANG Z X, WANG G Q, et al.PID neural network sliding-mode controller for three-level offshore wind power VSC-HVDC converter[J]. Proceedings of the CSEE, 2012, 32(4): 20-29.
[20] HERBST G.A simulative study on active disturbance rejection control(ADRC) as a control tool for practitioners[J]. Electronics, 2013, 2(4): 246-279.
[21] 马幼捷, 陶珑, 周雪松, 等. 结合自抗扰的风电系统电压环模糊自适应控制[J]. 太阳能学报, 2020, 41(12): 330-337.
MA Y J, TAO L, ZHOU X S, et al.Fuzzy adaptive control of voltage loop in wind power system combined with linear active disturbance rejection control[J]. Acta energiae solaris sinica, 2020, 41(12): 330-337.
[22] 王丹, 刘崇茹, 李庚银. 永磁直驱风电机组故障穿越优化控制策略研究[J]. 电力系统保护与控制, 2015, 43(24): 83-89.
WANG D, LIU C R, LI G Y.Research on the fault ride-through optimal control strategy of PMSG-based wind turbine[J]. Power system protection and control, 2015, 43(24): 83-89.
[23] ZHOU X S, LIU M, MA Y J, et al.Improved linear active disturbance rejection controller control considering bus voltage filtering in permanent magnet synchronous generator[J]. IEEE access, 2020, 8: 19982-19996.
[24] 徐昕远. 风力发电网侧逆变器控制策略研究[D]. 北京: 华北电力大学, 2017.
XU X Y.Research on control strategy of grid side inverter for wind power[D]. Beijing: North China Electric Power University, 2017.
[25] 戴金水, 吕敬. 风力发电并网逆变器双闭环PI调节器的设计[J]. 电工电气, 2011(9): 5-9, 14.
DAI J S, LYU J.Design of double closed-loop PI regulator for gird-connected inverter in wind power system[J]. Electrotechnics electric, 2011(9): 5-9, 14.

基金

国家自然科学基金面上项目(51877152); 天津自然科学基金(18JCZDJC97300)

PDF(2584 KB)

Accesses

Citation

Detail

段落导航
相关文章

/