不同装机容量下S-CO2塔式太阳能热发电系统的热力及经济性能分析

杨竞择, 杨震, 段远源

太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 125-130.

PDF(1807 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1807 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 125-130. DOI: 10.19912/j.0254-0096.tynxb.2021-0244

不同装机容量下S-CO2塔式太阳能热发电系统的热力及经济性能分析

  • 杨竞择, 杨震, 段远源
作者信息 +

THERMODYNAMIC AND ECONOMIC ANALYSIS OF SOLAR POWER TOWER SYSTEM BASED ON S-CO2 CYCLE WITH DIFFERENT INSTALLED CAPACITY

  • Yang Jingze, Yang Zhen, Duan Yuanyuan
Author information +
文章历史 +

摘要

建立超临界CO2布雷顿循环塔式太阳能热发电系统的热力性能和经济性能模型,比较不同装机容量下系统的年均效率,分析系统中各项成本占比及其随容量增长的变化规律,提出进一步降低发电成本的方法。结果表明,主要受镜场效率的影响,系统年均效率随装机容量增加先升后降,峰值为20 MW时的17.4%。发电成本随装机容量的增加而减小,由1 MW时的0.477 美元/kWh降至100 MW时的0.125 美元/kWh。减小镜场和储热的投资成本是降低大规模电站发电成本的关键。

Abstract

The thermodynamic and economic performance models of solar power tower system based on supercritical CO2 Brayton cycle are established. The average annual efficiencies of the systems under different installed capacity are compared. The cost proportion of each item and its variation with the increase of installed capacity are analyzed. The methods to further reduce the cost of power generation are proposed. The results show that the average annual efficiency of the system first increases and then decreases with the increase of installed capacity, and its peak value is 17.4% at 20 MW, which is mainly affected by the solar field efficiency. The levelized cost of energy decreases with the increase of installed capacity, from 0.477 $/kWh at 1 MW to 0.125 $/kWh at 100 MW. Reducing the investment costs of solar field and thermal energy storage are the keys to reduce the power generation cost of large-scale power plant.

关键词

太阳能热发电 / 布雷顿循环 / 热力学 / 超临界CO2 / 装机容量

Key words

solar thermal power / Brayton cycle / thermodynamics / S-CO2 / installed capacity

引用本文

导出引用
杨竞择, 杨震, 段远源. 不同装机容量下S-CO2塔式太阳能热发电系统的热力及经济性能分析[J]. 太阳能学报. 2022, 43(9): 125-130 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0244
Yang Jingze, Yang Zhen, Duan Yuanyuan. THERMODYNAMIC AND ECONOMIC ANALYSIS OF SOLAR POWER TOWER SYSTEM BASED ON S-CO2 CYCLE WITH DIFFERENT INSTALLED CAPACITY[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 125-130 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0244
中图分类号: TK514   

参考文献

[1] BEHAR O, KHELLAF A, MOHAMMEDI K.A review of studies on central receiver solar thermal power plants[J]. Renewable and sustainable energy reviews, 2013, 23: 12-39.
[2] DU E S, ZHANG N, HODGE B M, et al.Economic justification of concentrating solar power in high renewable energy penetrated power systems[J]. Applied energy, 2018, 222: 649-661.
[3] CLIFTON J, BORUFF B J.Assessing the potential for concentrated solar power development in rural Australia[J]. Energy policy, 2010, 38(9): 5272-5280.
[4] WANG K, HE Y L.Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling[J]. Energy conversion and management, 2017, 135: 336-350.
[5] ANGELINO G.Carbon dioxide condensation cycles for power production[J]. Journal of engineering for power, 1968, 90(3): 287-295.
[6] 周昊, 裘闰超, 李亚威. 基于超临界CO2布雷顿再压缩循环的塔式太阳能光热系统关键参数的研究[J]. 中国电机工程学报, 2018, 38(15): 4451-4458.
ZHOU H, QIU R C, LI Y W.Parameter analysis of solar power tower system driven by a recompression supercritical CO2 Brayton cycle[J]. Proceedings of the CSEE, 2018, 38(15): 4451-4458.
[7] 马岳庚, 刘明, 严俊杰, 等. 用于高温太阳能光热发电的S-CO2循环优化研究[J]. 工程热物理学报, 2018, 39(8): 1649-1655.
MA Y G, LIU M, YAN J J, et al.Optimization of recompression supercritical Brayton cycle for high temperature concentrated solar power application[J]. Journal of engineering thermophysics, 2018, 39(8): 1649-1655.
[8] AHN Y, BAE S J, KIM M, et al.Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear engineering and technology, 2015, 47(6): 647-661.
[9] YANG J Z, YANG Z, DUAN Y Y.Part-load performance analysis and comparison of supercritical CO2 Brayton cycles[J]. Energy conversion and management, 2020, 214: 112832.
[10] WANG K, HE Y L, ZHU H H.Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts[J]. Applied energy, 2017, 195: 819-836.
[11] YANG J Z, YANG Z, DUAN Y Y.Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system[J]. Energy, 2020, 201: 117676.
[12] ALSAGRI A S, CHIASSON A, GADALLA M.Viability assessment of a concentrated solar power tower with a supercritical CO2 Brayton cycle power plant[J]. Journal of solar energy engineering-transactions of the ASME, 2019, 141(5): 051006.
[13] CRESPI F, SANCHEZ D, SANCHEZ T, et al.Capital cost assessment of concentrated solar power plants based on supercritical carbon dioxide power cycles[J]. Journal of engineering for gas turbines and power-transactions of the ASME, 2019, 141(7): 071011.
[14] HAN X, PAN X Y, YANG H, et al.Dynamic output characteristics of a photovoltaic-wind-concentrating solar power hybrid system integrating an electric heating device[J]. Energy conversion and management, 2019, 193: 86-98.
[15] CARLSON M D, MIDDLETON B M, HO C K.Techno-economic comparison of solar-driven sCO2 Brayton cycles using component cost models baselined with vendor data and estimates[C]//Proceedings of the ASME 11th International Conference on Energy Sustainability, Charlotte, NC, USA, 2017: 1-7.
[16] MA Y G, ZHANG X W, LIU M, et al.Proposal and assessment of a novel supercritical CO2 Brayton cycle integrated with LiBr absorption chiller for concentrated solar power applications[J]. Energy, 2018, 148: 839-854.
[17] AMADEI C A, ALLESINA G, TARTARINI P, et al.Simulation of GEMASOLAR-based solar tower plants for the Chinese energy market: Influence of plant downsizing and location change[J]. Renewable energy, 2013, 55: 366-373.
[18] TURCHI C S, MA Z W, NEISES T W, et al.Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems[J]. Journal of solar energy engineering, transactions of the ASME, 2013, 135(4): 041007.

基金

北京市自然科学基金(3202014)

PDF(1807 KB)

Accesses

Citation

Detail

段落导航
相关文章

/