太阳能热利用系统能势匹配程度的对比分析

张沛晔, 穆瑞琪, 刘明, 严俊杰

太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 119-124.

PDF(1573 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1573 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 119-124. DOI: 10.19912/j.0254-0096.tynxb.2021-0246

太阳能热利用系统能势匹配程度的对比分析

  • 张沛晔, 穆瑞琪, 刘明, 严俊杰
作者信息 +

ENERGY POTENTIAL ANALYSIS OF SOLAR THERMAL ENERGY UTILIZATION SYSTEM

  • Zhang Peiye, Mu Ruiqi, Liu Ming, Yan Junjie
Author information +
文章历史 +

摘要

基于太阳能热利用系统,建立能势分析模型,对太阳能聚光过程、光热发电、光热化学等主要环节进行能量分析和能势分析,并对光热发电、光热化学2种技术路线进行对比。结果表明太阳能与吸热工质能势不匹配是太阳能热利用系统效率的关键限制因素,热功转化、热化学过程的不可逆性相对较小。现有太阳能光热、光热化学热利用系统的效率均较低,有较大的提升潜力。

Abstract

Based on solar thermal utilization system, energy potential analysis model is established to evaluate some key processes in solar thermal energy utilization technology, which include the solar concentrating process, conversion of thermal energy to power and solar-thermochemical utilization, and to compare the two utilization methods. The results show that the mismatching of solar energy and working fluid is the key factor limiting the efficiency of solar thermal utilization system. The results are expected to guide the solar thermal utilization technology.

关键词

能质系数 / 太阳能热利用 / 太阳能热发电 / 热化学反应

Key words

energy quality coefficient / solar thermal utilization / solar thermal power generation / thermochemical reaction

引用本文

导出引用
张沛晔, 穆瑞琪, 刘明, 严俊杰. 太阳能热利用系统能势匹配程度的对比分析[J]. 太阳能学报. 2022, 43(9): 119-124 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0246
Zhang Peiye, Mu Ruiqi, Liu Ming, Yan Junjie. ENERGY POTENTIAL ANALYSIS OF SOLAR THERMAL ENERGY UTILIZATION SYSTEM[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 119-124 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0246
中图分类号: TK519   

参考文献

[1] HONG H, JIN H G, JI J, et al.Solar thermal power cycle with integration of methanol decomposition and middle-temperature solar thermal energy[J]. Solar energy, 2005, 78(1): 49-58.
[2] 付鹏, 王宁玲, 乔加飞, 等. 塔式光热发电系统性能分析与评价[J]. 热力发电, 2020, 49(6): 53-60.
FU P, WANG N L, QIAO J F, et al.Performance analysis and evaluation of tower photothermal power generation system[J]. Thermal power generation, 2020, 49(6): 53-60.
[3] 李文甲. 光伏-光热-热化学互补的太阳能利用理论、方法与系统[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2018.
LI W J.Photovoltaic-photo-thermal-thermochemical complementary solar energy utilization theory, method and system[D]. Beijing: University of Chinese Academy of Sciences, Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2018.
[4] YAMAMOTO M, ISHIDA M.Energy quantity and quality analysis for energy transformations[J]. Energy, 1998, 23(12): 1095-1098.
[5] BEJAN A.Advanced engineering thermodynamics[M]. New Jersey: John Wiley & Sons, 2006: 441-443.
[6] GB/T 26972—2011,聚光型太阳能热发电术语[S].
GB/T 26972—2011, Vocabulary of concentrating solar thermal power[S].
[7] BELLOS E, TZIVANIDIS C.A detailed exergetic analysis of parabolic trough collectors[J]. Energy conversion and management, 2017, 149(1): 275-292.
[8] XIN L, KONG W Q, WANG Z F, et al.Thermal model and thermodynamic performance of molten salt cavity receiver[J]. Renewable energy, 2010, 35(5): 981-988.
[9] 朱明善. 环境状态下化合物的化学和化学焓[J]. 工程热物理学报, 1983, 4(1): 1-6.
ZHU M S.Chemical exergy and chemical enthalpy of compounds under environmental conditions[J]. Journal of engineering thermophysics, 1983, 4(1): 1-6.
[10] 项新耀. 化学的计算[J]. 油田地面工程, 1985, 4(6): 31-37.
XIANG X Y.Calculation of chemical exergy[J]. Oil field surface engineering, 1985, 4(6): 31-37.
[11] KAUSHIK S C, MISRA R D, SINGH N.Second law analysis of a solar thermal power system[J] International journal of solar energy, 2000, 20(4): 239-253.

基金

国家自然科学基金“能源有序转化”基础科学中心项目(51888103)

PDF(1573 KB)

Accesses

Citation

Detail

段落导航
相关文章

/