该文提出一种新型人工光合作用(AP)系统,通过PV/T装置将太阳能光热综合利用,转化为热能和电能,分别供给吸附式碳捕获和碳还原的反应过程。建立并耦合PV/T模型、吸附碳捕获与碳还原反应模型,随后基于CO2还原反应所需的CO2质量进行能量-质量匹配性分析。结果表明,金属有机骨架74(MOF-74)的CO2捕获量比活性炭大了6倍,具有较大的CO2捕获潜力,但当MOF-74吸附剂的质量高于50 kg时,CO2捕获的热效率降低到20%以下。采用聚光度为10的1 m2的PV/T时,15 kg的MOF-74可在一天内捕获0.45 kg的纯CO2,并制备0.152 kg甲烷。
Abstract
This paper proposes a new artificial photosynthesis (AP) system that involves a photovoltaic/thermal (PV/T) device to convert solar energy into heat and power, and the heat is supplied to adsorption-based carbon dioxide capture, and the power is supplied to the reduction reaction. This paper will build and couple the PV/T device, adsorption carbon capture, and carbon reduction reaction models. Then, the amount of captured carbon dioxide to that required by the reduction reaction process will be comparatively analyzed. Results show that MOF-74 can capture 6 times more carbon dioxide than activated carbon, so it has a better potential for carbon dioxide capture. However, when the MOF-74 adsorbent mass is higher than 50 kg, the carbon dioxide capture's thermal efficiency decreases to below 20%. Moreover, when a 1 square meter PV/T panel with 10 solar concentrations is used, 5 kg of MOF-74 can capture 0.45 kg/d of carbon dioxide, which subsequently enabled 0.152 kg/d of methane production.
关键词
太阳能 /
人工光合作用 /
气体吸附 /
电解还原
Key words
solar energy /
artificial photosynthesis /
gas adsorption /
electrolytic reduction
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李晓慧, 范同祥. 人工光合作用[J]. 化学进展, 2011, 23(9): 1841-1853.
LI X H, FAN T X.Artificial photosynthesis[J]. Progress in chemistry, 2011, 23(9): 1841-1853.
[2] TU W G, ZHOU Y, ZOU Z G.Photocatalytic Conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects[J]. Advanced materials, 2014, 26(27): 4607-4626.
[3] LE G A, ABANADES S, FLAMANT G.CO2 and H2O splitting for thermochemical production of solar fuels using nonstoichiometric ceria and ceria/zirconia solid solutions[J]. Energy & fuels, 2011, 25(10): 4836-4845.
[4] GONG M, WALL G.Life cycle exergy analysis of solar energy systems[J]. Journal of fundamentals of renewable energy and applications, 2014, 5(1): 1-8
[5] XIA C, ZHU P, JIANG Q, et al.Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices[J]. Nature energy, 2019, 4(9): 776-785.
[6] WANG YH, LIU J L, WANG Y F, et al.Efficient solar-driven electrocatalytic CO2 reduction in a redox-medium-assisted system[J]. Nature communications, 2018, 9(1): 5003.
[7] SINGH M R, BELL A T.Design of an artificial photosynthetic system for production of alcohols in high concentration from CO2[J]. Energy & environmental science, 2016, 9(1): 193-199.
[8] KWAN T H, ZHAO B, LIU J, et al.Performance analysis of the sky radiative and thermoelectric hybrid cooling system[J]. Energy, 2020, 2020(sup c): 117516.
[9] TOOLBOX T E.Fuels - Higher and lower Calorific Values[M].
基金
中央高校基本科研业务费专项资金资助(WK2090000021); 合肥市自然科学基金(任务编号(2021048)); 国家重点研发计划(2020YFA0710100); 国家自然科学基金面上项目(51776193)