为实现大功率直流新能源/储能系统的接入,以一种级联同相三电平Buck-Boost变换器为研究对象,该拓扑可在宽电压波动范围内可升、可降,能适应大功率、宽范围电压的直流新能源/储能的接入和变换。首先,对级联同相三电平Buck-Boost变换器的工作原理进行分析,基于储能充放电控制均存在Buck模态和Boost模态2种工作模式,分别推导级联三电平Buck-Boost变换器的小信号平均模型,其次,考虑到中点电压平衡问题,分析占空比差值ΔD对系统的影响,并通过Bode图,得出ΔD只对Boost模式低频段时影响较大,而对Buck模式和Boost模式高频段影响不大。然后,根据系统的小信号模型,对控制器进行设计,对比了传统控制器与TypeⅢ控制器的差异,得出TypeⅢ控制器有更大的控制带宽及稳定性。最后,通过仿真验证2种控制器的效果及特性。
Abstract
In order to solve the access of new energy generation/energy storage devices, in this paper a cascaded three-level Buck-Boost converter is taken as the research object. The topology can achieve the access of new energy generation/energy storage devices with high power and wide range of input voltage. Firstly, the working principle of cascaded three-level buck-boost converter is analyzed. Based on the charging and discharging of energy storage devices, there are two operating modes: Buck mode and Boost mode, and the small-signal average model of cascaded three-level buck-boost chopper is deduced respectively. Secondly, considering the midpoint voltage balance problem, the influence of the duty-cycle difference ΔD on the system is analyzed, and through the Bode diagram, it is concluded that the influence of ΔD is great only in the low frequency band of Boost mode, but not in the high frequency band of Buck mode and Boost mode. Then, according to the small signal model of the system, the controller is designed, and the differences between the PI controller and the TypeⅢ controller are compared. It is concluded that the TypeⅢ controller has greater control bandwidth and stability. Finally, the effect and characteristics of two controllers are verified by simulation.
关键词
新能源/储能接入 /
三电平直流变换器 /
工作原理 /
小信号 /
控制器设计
Key words
new energy/energy storage access /
three-level DC converter /
working principle /
small signal /
controller design
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 吕志盛, 闫立伟, 罗艾青, 等. 新能源发电并网对电网电能质量的影响研究[J]. 华东电力, 2012, 40(2): 251-256.
LYU Z S, YAN L W, LUO A Q, et al. Study on the influence of new energy generation connected to grid on power quality[J]. East China electric power, 2012, 40(2): 251-256.
[2] 廖怀庆, 刘东, 黄玉辉, 等. 基于大规模储能系统的智能电网兼容性研究[J]. 电力系统自动化, 2010, 34(2): 15-19.
LIAO H Q, LIU D, HUANG Y H, et al. Research on compatibility of smart grid based on large-scale energy storage system[J]. Automation of electric power systems, 2010, 34(2): 15-19.
[3] LEHMAN B, BASS R M.Switching frequency dependent averaged models for PWM DC-DC converters[J]. IEEE transactions on power electronics, 1996, 11(1): 89-98.
[4] KWASINSKI A.Quantitative evaluation of DC microgrids availability: Effects of system architecture and converter topology design choices[J]. IEEE transactions on power electronics, 2011, 26(3): 835-851.
[5] 王天威, 邵帅, 张军明.DAB DC-DC变流器的磁平衡控制方法[J]. 电工技术, 2018(11): 37-39, 42.
WANG T W, SHAO S, ZHANG J M.Magnetic balance control method of DAB DC-DC converter[J]. Electrotechnical technology, 2018(11): 37-39, 42.
[6] 杨晨, 张中锋, 葛雪峰, 等. 基于多重移相的双侧电压反馈DAB控制技术[J]. 电力电子技术, 2020, 54(11): 27-29, 74.
YANG C, ZHONG Z F, GE X F, et al. Two-side voltage feedback DAB control based on multi-phase shift[J]. Power electronics, 2020, 54(11): 27-29, 74.
[7] QIN H, KIMBAL J W.Generalized average modeling of dual active bridge DC-DC converter[J]. IEEE transactions on power electronics, 2012, 27(4): 2078-2084.
[8] JIANG W, FAHIMI B.Multiport power electronic interface—Concept, modeling, and design[J]. IEEE transactions on power electronics, 2011, 26(7): 1890-1900.
[9] 陈搏.6 kW双向直流变换器的研发[D]. 武汉: 武汉理工大学, 2012.
CHEN B.Research and development of 6 kW bidirectional DC/DC converter[D]. Wuhan: Wuhan University of Technology, 2012.
[10] 王凤岩, 许建平.DC/DC开关电源控制方法小信号模型比较[J]. 电力电子技术, 2007(1): 78-80.
WANG F Y, XU J P.Comparison of small signal models for DC/DC switching power supply control methods[J]. Power electronics technology, 2007(1): 78-80.
[11] 杨晨, 谢少军, 毛玲, 等. 基于双管Buck-Boost变换器的直流微电网光伏接口控制分析[J]. 电力系统自动化, 2012, 36(13): 45-50.
YANG C, XIE S J, MAO L, et al. Analysis of photovoltaic interface control of DC microgrid based on dual tube Buck-Boost converter[J]. Automation of electric power systems, 2012, 36(13): 45-50.
[12] 江晨.直流微网中DC/DC变换器并联技术研究[D]. 北京: 北京交通大学, 2016.
JIANG C.Research on parallel technology of DC/DC converters in DC microgrid[D]. Beijing: Beijing Jiaotong University, 2016.
[13] 任小永, 唐钊, 阮新波, 等. 一种新颖的四开关Buck-Boost变换器[J]. 中国电机工程学报, 2008, 28(21): 15-19.
REN X Y, TANG Z, RUAN X B, et al. A novel four-switch Buck-Boost converter[J]. Proceedings of the CSEE, 2008, 28(21): 15-19.
[14] 徐德鸿.电力电子系统建模及控制[M]. 北京: 机械工业出版社, 2006.
XU D H.Power electronic system modeling and control[M]. Beijing: China Machine Press, 2006.
[15] 马永正.级联Buck-Boost变换器控制策略研究[D]. 秦皇岛: 燕山大学, 2016.
MA Y Z.Research on control strategy of cascaded Buck Boost converter[D]. Qinhuangdao: Yanshan University, 2016.
[16] AHARON I, KUPERMAN A, SHMILOVITZ D.Analysis of dual-carrier modulator for bidirectional noninverting Buck-Boost converter[J]. IEEE transactions on power electronics, 2015, 30(2): 840-848.
[17] LEE Y J, KHALIGH A, EMADI A.A compensation technique for smooth transitions in a noninverting buck-boost converter[J]. IEEE transactions on power electronics, 2009, 24(4): 1002-1015.
[18] 霍现旭, 张伟, 项添春, 等. 直流微网系统用交错并联双向直流变换器控制方法[J]. 电力系统及其自动化学报, 2020, 32(1): 36-41.
HUO X X, ZHANG W, XIANG T C, et al. Control method of interlacing parallel bidirectional DC converter for DC microgrid system[J]. Proceedings of the CSU-EPSA, 2020, 32(1): 36-41.
[19] DOWLATABADI R, MONFARED M, GOLESTAN S, et al. Modelling and controller design for a non-inverting buck-boost chopper[C]//International Conference on Electrical Engineering & Informatics, IEEE, Bandung, Indonesia, 2011.
[20] 林镇煌, 毛行奎.Type-Ⅲ数字补偿器在双Buck逆变器中的实现[J]. 电气技术, 2019, 20(2): 7-11.
LIN Z H, MAO X K.Implementation of Type-Ⅲ digital compensator in dual Buck inverter[J]. Electrical technology, 2019, 20(2): 7-11.
[21] 吕星宇, 罗全明, 谌思, 等. 一种功能解耦型高增益DC/DC变换器分析与设计[J]. 中国电机工程学报, 2020, 40(3): 243-255.
LYU X Y, LUO Q M, CHEN S, et al. Analysis and design of functionally decoupled high gain DC/DC converter[J]. Proceedings of the CSEE, 2020, 40(3): 243-255.
[22] LIU P J, CHANG C W.CCM noninverting Buck-Boost converter with fast duty-cycle calculation control for line transient improvement[J]. IEEE transactions on power electronics, 2018, 33(6): 5097-5107.
基金
国家自然科学基金面上项目(S1977067)