光伏系统直流母线电弧故障的固有频率法测距

唐海龙, 熊兰, 吴淑牛, 王韵, 陈永辉

太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 30-37.

PDF(2072 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2072 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 30-37. DOI: 10.19912/j.0254-0096.tynxb.2021-0255

光伏系统直流母线电弧故障的固有频率法测距

  • 唐海龙, 熊兰, 吴淑牛, 王韵, 陈永辉
作者信息 +

LOCATING ARC FAULT OF DC BUS IN PHOTOVOLTAIC SYSTEM BY NATURAL FREQUENCY METHOD

  • Tang Hailong, Xiong Lan, Wu Shuniu, Wang Yun, Chen Yonghui
Author information +
文章历史 +

摘要

提出一种基于固有频率法的直流母线电弧故障测距方法。在电弧故障发生后,记录输电线首端的一段暂态电压信息;对于串联电弧故障,取断路器动作后的数据;对于并联电弧故障,则取断路器动作前的数据。提取固有频率主成分后,代入公式d-v/(2f)均可实现对串联和并联电弧故障点的测距。与传统行波法测距相比,具有计算简单、测距精度高以及成本低的优点。通过电路模型仿真与低压直流输电平台实验,证明了方法的可靠性与实用性。试验结果表明,该方法的测距误差在6%以内。

Abstract

This paper presented a DC arc fault location method of the cable by natural frequency. Firstly, a transient voltage information is recorded at the first end of the transmission line after an arc fault occurs. For series arc fault, by extracting the data after circuit breaker action. For parallel arc fault, by extracting the data before circuit breaker action. Then the principal component of natural frequency can be chosen. Finally, a specific formula d-v/(2f) is used to calculate the distance of fault points whatever series or parallel arcs distance. Compared with the traditional traveling wave method, it has the advantages of simple calculation, high accuracy and low cost. The reliability and practicability of the method are proved by circuit model simulation and experiment test with a low voltage DC transmission platform. The test results show that the distance measuring error is less than 6%.

关键词

光伏发电 / 电弧 / 故障测距 / 固有频率

Key words

photovoltaic generators / electric arcs / fault location / natural frequencies

引用本文

导出引用
唐海龙, 熊兰, 吴淑牛, 王韵, 陈永辉. 光伏系统直流母线电弧故障的固有频率法测距[J]. 太阳能学报. 2022, 43(9): 30-37 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0255
Tang Hailong, Xiong Lan, Wu Shuniu, Wang Yun, Chen Yonghui. LOCATING ARC FAULT OF DC BUS IN PHOTOVOLTAIC SYSTEM BY NATURAL FREQUENCY METHOD[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 30-37 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0255
中图分类号: TM501.2   

参考文献

[1] 刘强, 郭珂, 毛明轩, 等. 一种基于串联等效电阻的光伏故障检测方法[J]. 太阳能学报, 2020, 41(10): 119-126.
LIU Q, GUO K, MAO M X, et al.A photovoltaic fault detection method based on series equivalent resistance[J]. Acta energiae solaris sinica, 2020, 41(10): 119-126.
[2] ZHANG L, LIANG J, TANG W, et al.Converting AC distribution lines to DC to increase transfer capacities and DG penetration[J]. IEEE transactions on smart grid, 2019, 10(2): 1477-1487.
[3] 黄宵宵, 吴春华, 李智华, 等. 光伏系统直流电弧故障检测方法对比研究[J]. 太阳能学报, 2020, 41(8): 204-214.
HUANG X X, WU C H, LI Z H, et al.Comparison of DC arc fault detection methods for photovoltaic system[J]. Acta energiae solaris sinica, 2020, 41(8): 204-214.
[4] 熊兰, 曾泽宇, 杨军, 等. 小电流直流故障电弧的数学模型及其特性[J]. 电工技术学报, 2019, 34(13): 2820-2829.
XIONG L, ZENG Z Y, YANG J, et al.Mathematical model and characteristics of low current DC fault arc[J]. Transactions of China Electrotechnical Society, 2019, 34(13): 2820-2829.
[5] 吴春华, 徐文新, 李智华, 等. 光伏系统直流侧故障电弧危害分析及保护策略[J]. 太阳能学报, 2020, 41(9): 198-206.
WU C H, XU W X, LI Z H, et al.DC arc fault hazards analysis and protection in photovoltaic system[J]. Acta energiae solaris sinica, 2020, 41(9): 198-206.
[6] 徐岩, 刘婧妍, 张诗杭, 等. 基于遗传算法的直流配电网线路故障定位方法[J]. 太阳能学报, 2020, 41(12): 1-8.
XU Y, LIU J Y, ZHANG S H, et al.Fault location method based on genetic algorithm for DC distribution network[J]. Acta energiae solaris sinica, 2020, 41(12): 1-8.
[7] 葛耀中. 新型继电保护和故障测距的原理与技术[M]. 西安: 西安交通大学出版社, 2007.
GE Y Z.Principle and technology of novel relay protection and fault ranging[M]. Xi'an: Xi'an Jiaotong University Press, 2007.
[8] 束洪春, 田鑫萃, 张广斌, 等. ±800 kV直流输电线路故障定位的单端电压自然频率方法[J]. 中国电机工程学报, 2011, 31(25): 104-111.
SHU H C, TIAN X C, ZHANG G B, et al.Fault location for~800 kV HVDC transmission lines using natural frequency of single terminal voltage data[J]. Proceedings of the CSEE, 2011, 31(25): 104-111.
[9] BASHIR M, NIAZY I, SADEH J, et al.Considering characteristics of arc on travelling wave fault location algorithm for the transmission lines without using line parameters[C]//2011 10th International Conference on Environment and Electrical Engineering, Rome, Italy, 2011.
[10] XIONG Q, FENG X Y, GATTOZZI A L, et al.Series arc fault detection and localization in DC distribution system[J]. IEEE transactions on instrumentation and measurement, 2020, 69(1): 122-134.
[11] 吴春华, 胡雅, 李智华, 等. 基于SSTDR的光伏系统直流母线电弧故障在线检测与定位[J]. 中国电机工程学报, 2020, 40(8): 2725-2735.
WU C H, HU Y, LI Z H, et al.On-line detection and location of DC bus arc faults in PV systems based on SSTDR[J]. Proceedings of the CSEE, 2020, 40(8): 2725-2735.
[12] THOMAS D W P, LI J, CAO Y, et al. A new double-ended approach to the series arc fault location[C]//12th IET International Conference on Developments in Power System Protection. Copenhagen, Denmark, 2014.
[13] DHAR S, PATNAIK R K, DASH P K.Fault detection and location of photovoltaic based DC microgrid using differential protection strategy[J]. IEEE transactions on smart grid, 2018, 9(5): 4303-4312.
[14] 杨林, 王宾, 董新洲. 高压直流输电线路故障测距研究综述[J]. 电力系统自动化, 2018, 630(8): 191-197.
YANG L, WANG B, DONG X Z.Overview of fault location methods in high voltage direct current transmission lines[J]. Automation of electric power systems, 2018, 630(8): 191-197.
[15] 廖凯, 何正友, 李小鹏. 基于行波固有频率的高压直流输电线路故障定位[J]. 电力系统自动化, 2013, 37(3): 104-109.
LIAO K, HE Z Y, LI X P.Fault location of HVDC transmission line based on the natural frequency of traveling wave[J]. Automation of electric power systems, 2013, 37(3): 104-109.
[16] 邬林勇, 何正友, 钱清泉. 一种提取行波自然频率的单端故障测距方法[J]. 中国电机工程学报, 2008, 28(10): 69-75.
WU L Y, HE Z Y, QIAN Q Q.A single ended fault location method using traveling wave natural frequency[J]. Proceedings of the CSEE, 2008, 28(10): 69-75.
[17] 邬林勇, 何正友, 钱清泉. 单端行波故障测距的频域方法[J]. 中国电机工程学报, 2008, 25(28): 99-104.
WU L Y, HE Z Y, QIAN Q Q.A frequency domain approach to single-ended traveling wave fault location[J]. Proceedings of the CSEE, 2008, 25(28): 99-104.
[18] 熊兰, 陈永辉, 杨子康, 等. 直流配电网低压侧稳定燃弧阈值电压研究[J]. 电工技术学报, 2021, 36(19): 4097-4106.
XIONG L, CHEN Y H, YANG Z K, et al.Study on threshold voltage for stable arcing by the low voltage side of DC distribution line[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4097-4106.
[19] DUDDELL W.On the resistance and electromotive forces of the electric arc[J]. Philosophical transactions of the Royal Society of London, 1904, 203(23): 305-342.
[20] NOTTINGHAM W B.A new equation for the static characteristic of the normal electric arc[J]. Journal of the American Institute of Electrical Engineers, 2013, 42(1): 12-19.
[21] 蔡新雷, 宋国兵, 高淑萍, 等. 利用电流固有频率的VSC-HVDC直流输电线路故障定位[J]. 中国电机工程学报, 2011, 31(28): 112-119.
CAI X L, SONG G B, GAO S P, et al.A novel fault-location method for VSC-HVDC transmission lines based on natural frequency of current[J]. Proceedings of the CSEE, 2011, 31(28): 112-119.
[22] 奚鑫泽, 黄文焘, 张林, 等. 基于串联电抗的光伏电站直流汇集接入系统低压电缆综合保护方法[J]. 电工技术学报, 2018, 33(增刊2): 358-365.
XI X Z, HUANG W T, ZHANG L, et al.Comprehensive protection method for low-voltage cable of PV plant DC collection system based on series reactance[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 358-365.

PDF(2072 KB)

Accesses

Citation

Detail

段落导航
相关文章

/