静水及波浪中四筒型基础的动力及运动特性研究

刘宪庆, 赵明阶, 乐丛欢, 余葵, 罗盛

太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 211-217.

PDF(2030 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2030 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (9) : 211-217. DOI: 10.19912/j.0254-0096.tynxb.2021-0268

静水及波浪中四筒型基础的动力及运动特性研究

  • 刘宪庆1, 赵明阶1, 乐丛欢2, 余葵1, 罗盛3
作者信息 +

RESEARCH ON DYNAMIC AND MOTION CHARACTERISTICS OF FOUR BUCKET FOUNDATION IN STILL WATER AND WAVES

  • Liu Xianqing1, Zhao Mingjie1, Le Conghuan2, Yu Kui1, Luo Sheng3
Author information +
文章历史 +

摘要

以四筒型基础为研究对象,通过模型试验和数值模拟的形式对影响结构静水和规则波浪中动力及运动特性的因素进行分析。结果表明:MOSES能较好地预测结构在静水中的动力特性以及波浪中的运动响应的变化趋势;结构摇荡运动的附加质量系数取值在1.4~1.6之间,大于船舶动力学的建议值1.2;随着吃水的增加,结构的垂荡运动呈增大趋势,但结构的摇摆运动呈下降趋势;随着水深的增加,结构的摇荡运动呈下降趋势,即浅水可增强结构的竖向运动。

Abstract

Taking four bucket foundations for object, the factors influencing the dynamic and motion characteristics of the structure are studied by model tests and numerical simulations in still water and regular waves. The results show that: The dynamic characteristics of the structure in still water and motion responses in waves can be predicted reasonably well by MOSES the added mass coefficients of oscillating motion range from 1.4 to 1.6, which are greater than the recommended value of 1.2 in ship dynamics; With the increase of draft, the heave motion of the structure shows an increasing trend while the rocking motion shows a decreasing trend; As the water depth increases, the oscillating motion of the structure decreases, that is to say, the vertical motions are enhanced in shallower water.

关键词

海上风电 / 筒型基础 / 附加质量系数 / 响应幅值算子 / 吃水 / 水深

Key words

offshore wind power / bucket foundation / added mass coefficient / response amplitude operator (RAO) / draft / water depth

引用本文

导出引用
刘宪庆, 赵明阶, 乐丛欢, 余葵, 罗盛. 静水及波浪中四筒型基础的动力及运动特性研究[J]. 太阳能学报. 2022, 43(9): 211-217 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0268
Liu Xianqing, Zhao Mingjie, Le Conghuan, Yu Kui, Luo Sheng. RESEARCH ON DYNAMIC AND MOTION CHARACTERISTICS OF FOUR BUCKET FOUNDATION IN STILL WATER AND WAVES[J]. Acta Energiae Solaris Sinica. 2022, 43(9): 211-217 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0268
中图分类号: P752    TV321   

参考文献

[1] BYRNE B W, HOULSBY G T, MARTIN C, et al.Suction caisson foundations for offshore wind turbines[J]. Wind energy, 2002, 26(3): 145-155.
[2] HOULSBY G T, IBSEN L B, BYRNE B W.Suction caissons for wind turbines[C]//Frontiers in Offshore Geotechnics: ISFOG, Perth, WA, Australia, 2005: 75-93.
[3] LARS B I.The bucket foundation and its competitiveness versus monopiles and jacket structures[C]//The International Conference in Research at Alpha Ventus, Germany, Bremerhaven, 2012.
[4] FU D F, BIENEN B, GAUDIN C, et al.Undrained capacity of a hybrid subsea skirted mat with caissons under combined loading[J]. Canadian geotechnical journal, 2014, 51: 934-949.
[5] DING H Y, LIU Y G, ZHANG P Y, et al.Model tests on the bearing capacity of wide-shallow composite bucket foundations for offshore wind turbines in clay[J]. Ocean engineering, 2015, 103: 114-122.
[6] WANG X F, ZENG X W, LI J L, et al.A review on recent advancements of substructures for offshore wind turbines[J]. Energy conversion and management, 2018, 158: 103-119.
[7] 张浦阳, 黄宣旭. 海上风电吸力式筒型基础应用研究[J]. 南方能源建设, 2018, 5(4): 1-11.
ZHANG P Y, HUANG X X.Application research on suction bucket foundation for offshore wind power[J]. South energy construction, 2018, 5(4): 1-11.
[8] 别社安, 时忠民, 王翎羽. 气浮结构的运动特性研究[J]. 中国港湾建设, 2001(2): 18-21.
BIE S A, SHI Z M, WANG L Y.Study on kinetic properties of the air floated structures[J]. China harbour engineering, 2001(2): 18-21.
[9] SEIDL L H.Development of an air stabilized platform[R]. University of Hawaii, Department of Ocean Engineering technical report submitted to US Department of Commerce, Maritime Administration, 1980: 88.
[10] CHEUNG K F, PHADKE A L, SMITH D A, et al.Hydrodynamic response of a pneumatic floating platform[J]. Ocean engineering, 2000, 27(12): 1407-1440.
[11] 姜大宁. 钢筒组块的静稳性和波浪中的运动响应[D]. 天津: 天津大学, 2005.
JIANG D N.Static stability and motion response of steel cylinders block in wave[D]. Tianjin: Tianjin University,2005.
[12] PINKSTER J A, FAUZI A, INOUE Y, et al.The behaviour of large air cushion supported structures in waves[C]//Proceedings of 2nd International Conference Hydro-elasticity in Marine Technology, Fukuoka, Japan, 1998: 497-509.
[13] KESSEL J L F. Aircushion supported mega-floaters[D]. Delft: Delft University of Technology, 2010.
[14] THIAGARAJAN K P.Hydrostatic stability of compartmented structures supported by air cushions[J]. Journal of ship research, 2009, 53(3): 151-158.
[15] BIE S A, JI C N, REN Z J, et al.Study on floating properties and stability of air floated structures[J]. China ocean engineering, 2002, 16: 263-272.
[16] 张积乐. 人工岛基础气浮拖航运动性能试验研究[D]. 天津: 天津大学, 2011.
ZHANG J L.An experimental study on the motion performances of air supported artificial island foundation during floating towing[D]. Tianjin: Tianjin University, 2011.
[17] 黄旭. 海上风电结构一体化安装技术的浮运分析[D]. 天津: 天津大学, 2011.
HUANG X.Floating analysis of integrated installation technology with offshore wind-power structure[D]. Tianjin: Tianjin University, 2011.
[18] LIU X Q, ZHANG P Y, ZHAO M J, et al.Air-floating characteristics of large-diameter multi-bucket foundation for offshore wind turbines[J]. Energies, 2019, 12: 4108.
[19] 刘宪庆. 气浮筒型基础拖航稳性和动力响应研究[D]. 天津: 天津大学, 2012.
LIU X Q.Study on stability and dynamic response for towing of air-floating bucket foundation[D]. Tianjin: Tianjin University, 2012.
[20] LIU X Q, ZHANG P Y, ZHAO M J, et al.Influencing factors of motion responses for large-diameter tripod bucket foundation[J]. Applied sciences, 2019, 9: 4957.
[21] 张学栋. 一种气垫式风机支撑平台的绕射及垂荡动力性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
ZHANG X D.The analysis of diffraction and heave dynamic performance for a floating wind turbine platform supported by aircushion[D]. Harbin: Harbin Engineering University, 2018.
[22] LEE C H, NEWMAN J N.An extended boundary integral equation for structures with oscillatory free-surface pressure[J]. International journal of offshore and polar engineering, 2016(1): 41-47.
[23] MALENICA S, ZALAR M.Semi analytical solution for heave radiation of the air cushion supported vertical circular cylinder in water of finite depth[C]//Proceedings of 16th International Workshop on Water Waves and Floating Bodies Hiroshima, Japan, 2001: 1-4.
[24] ZHANG P Y, DING H Y, LE C H, et al.Towing characteristics of large-scale composite bucket foundation for offshore wind turbines[J]. Journal of Southeast University (English edition), 2013, 29(3): 300-304.
[25] 刘宪庆, 赵明阶, 孙涛. 大直径多筒型基础的运动特性理论及试验研究[C]//第十九届中国海洋(岸)工程学术讨论会论文集, 重庆, 中国, 2019: 273-278.
LIU X Q, ZHAO M J, SUN T.Theoretical and experimental studies on motion characteristics of multi-bucket foundations with large diameter[C]//Proceedings of the 19th China Ocean (Offshore) Engineering Symposium, Chongqing, China, 2019: 273-278.
[26] 徐宝. 筒型基础结构附加质量系数的模型试验研究[D]. 天津: 天津大学, 2006.
XU B.The model test study on added mass coefficient of bucket foundation structure[D]. Tianjin: Tianjin University, 2006.
[27] 刘应中. 船舶兴波阻力理论[M]. 北京: 国防工业出版社, 2003.
LIU Y Z.Theory of ship wave making resistance[M]. Beijing: National Defense Industry Press, 2003.

基金

国家重点研发计划(2018YFC0810402); 重庆市自然科学基金(CSTC2016JCYJA0580); 国家自然科学基金(51679163); 水利工程仿真与安全国家重点实验室开放基金(HESS15-12); 重庆英才计划·创新创业示范团队(CQYC201903204)

PDF(2030 KB)

Accesses

Citation

Detail

段落导航
相关文章

/