针对大型风力机叶片铺层材料单层厚度对叶片模态频率的影响作用,对铺层材料单层厚度间的耦合机制进行研究。采用Box-Behnken法设计实验,建立叶片铺层单层厚度与其第一阶模态频率间的响应面模型,揭示叶片不同铺层材料单层厚度对模态频率的影响规律。以叶片前两阶模态频率为优化目标、以铺层材料单层厚度为设计变量建立优化数学模型,并采用遗传算法与有限元法结合进行全局寻优。以某企业1.5 MW叶片为算例,结果表明,优化后叶片第一阶挥舞、摆振频率均提高了0.07 Hz。
Abstract
The effect of single-layer thickness of layup material on the modal frequency of large wind turbine blades is studied to investigate the coupling mechanism of single-layer thickness of layup material. By using the Box-Behnken method to design experiments, the response surface model between the single-layer thickness of the blade ply material and the first-order modal frequency is established to reveal the influence of the single-layer thickness of different ply materials on the modal frequency of the blade. Further, an optimization mathematical model with the first two orders of the blade modal frequency as the optimal target and the single-layer thickness of the layup material as the design variable is proposed, which uses a combination of genetic algorithm and finite element method for global optimization. The results show that the first-order falpwise and edgewise frequencies of the blade are increased by 0.07 Hz after optimization.
关键词
风力机 /
叶片 /
灵敏度分析 /
模态分析 /
单层厚度 /
响应面模型
Key words
wind turbines /
blades /
sensitivity analysis /
modal analysis /
single thickness /
response surface model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHENG Y Q, MA H D, WEI J F, et al.Robust optimization for composite blade of wind turbine based on kriging model[J]. Advanced composites letters, 2020, 29: 1-8.
[2] BARBU L G, OLLER S, MARTINEZ X, et al.High-cycle fatigue constitutive model and aload-advance strategy for the analysis of unidirectional fiber reinforced composites subjected to longitudinal loads[J]. Composite structures, 2019, 220: 622-641.
[3] 赵清鑫, 张兰挺. 基于径向基神经网络的风力机叶片铺层优化[J]. 太阳能学报, 2020, 41(4): 229-234.
ZHAO Q X, ZHANG L T.Ply parameter optimization of wind turbine blade based on radial basis function netural network[J]. Acta energiae solaris sinica, 2020, 41(4): 229-234.
[4] 张文广, 韩越, 王奕枫, 等. 基于改进DMC的风力机智能叶片多目标襟翼控制[J]. 太阳能学报, 2019, 40(3): 600-607.
ZHANG W G, HAN Y, WANG Y F, et al.Improved DMC-based smart blade multi-target flap control of wind turbine[J]. Acta energiae solaris sinica, 2019, 40(3): 600-607.
[5] FAGAN E, FLANAGAN M, LEEN S, et al.Physical experimental static testing and structural design optimisation for a composite wind turbine blade[J]. Composite structures, 2017, 164: 90-103.
[6] 田德, 罗涛, 林俊杰, 等. 基于额定载荷的10 MW海上风电叶片铺层优化[J].太阳能学报, 2018, 39(8): 2195-2202.
TIAN D, LUO T, LIN J J, et al.Optimization design of composite laminate material layers for 10 MW offshore wind turbine blade based on rated load[J]. Acta energiae solaris sinica, 2018, 39(8): 2195-2202.
[7] 汪泉, 陈进, 王君, 等. 气动载荷作用下复合材料风力机叶片结构优化设计[J]. 机械工程学报, 2014, 50(9): 114-121.
WANG Q, CHEN J, WANG J, et al.Structural optimization of composite wind turbine blade under aerodynamic loads[J]. Journal of mechanical engineering, 2014, 50(9): 114-121.
[8] CHAN C M, BAI H L, HE D Q.Blade shape optimization of the Savonius wind turbine using a genetic algorithm[J]. Applied energy, 2018, 213: 148-157.
[9] 郑玉巧, 赵荣珍, 刘宏. 大型风力机叶片气动与结构耦合优化设计研究[J]. 太阳能学报, 2015, 36(8): 1812-1817.
ZHENG Y Q, ZHAO R Z, LIU H.Research on optimization design of aerodynamic and structural coupling in large-scale wind turbine blade[J]. Acta energiae solaris sinica, 2015, 36(8): 1812-1817.
[10] MANDELL J F, SAMBORSKY D D.DOE/MSU composite material fatigue database: test methods, materials, and analysis[M]. Albuquerque: Sandia National Laboratories, 1997.
[11] GL Wind2010, Guideline for the certification of wind turbines[S].
基金
国家自然科学基金(51965034); 兰州市人才创新创业项目(2018-RC-25)