USST高性能水平轴风力机翼型族

张倩莹, 伊鹏辉, 刘兆方, 黄典贵

太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 289-295.

PDF(1865 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1865 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 289-295. DOI: 10.19912/j.0254-0096.tynxb.2021-0273

USST高性能水平轴风力机翼型族

  • 张倩莹1,2, 伊鹏辉1,2, 刘兆方1,2, 黄典贵1,2
作者信息 +

USST HIGH PERFORMANCE AIRFOIL FAMILY FOR HORIZONTAL AXIS WIND TURBINE

  • Zhang Qianying1,2, Yin Penghui1,2, Liu Zhaofang1,2, Huang Diangui1,2
Author information +
文章历史 +

摘要

结合层流翼型与钝尾缘的特性,通过Hicks-Henne型函数对翼型参数化修型,基于多岛遗传算法及Xfoil气动分析,针对大型水平轴风力机翼型进行多目标函数、多设计工况、多约束条件下的优化设计,得到适用于大型风力机的高性能翼型族(USST翼型族)。其升阻比在大多数攻角下均高于同厚度的FFA、DU系列等现有风力机翼型族,且在同样的升力系数下具有更大的升阻比。最后为考核优化设计得到的翼型族,采用数值模拟方法对优化结果进行验证,证明设计得到的新型风力机翼型族具有优越的气动性能。

Abstract

Combining the characteristics of laminar airfoil and blunt trailing edge, the airfoil is parametrically modified by Hicks-Henne type function. Based on the multi-island genetic algorithm and Xfoil aerodynamic analysis, the optimal design under multi-objective functions, multiple design conditions and multiple constraints conditions is carried out for the airfoil of large horizontal axis wind turbines. By doing that, a high-performance airfoil family(USST airfoil family) suitable for large wind turbines is obtained. Its lift-drag ratio is higher than that of the existing wind turbine airfoil families such as the FFA and DU series at most angles of attack. The lift coefficient has a larger lift-to-drag ratio, especially in the case of a high lift coefficient. Finally, in order to evaluate the optimized design of the airfoil family, based on the turbulence transition model (Transition SST), the optimization results are verified by the numerical simulation method, which proves that the new wind turbine airfoil family designed in this paper has superior aerodynamic performance.

关键词

风力机 / 水平轴 / 翼型 / 钝尾缘 / 气动性能 / 叶片优化

Key words

wind turbines / horizontal axis / airfoil / blunt trailing edge / aerodynamic performance / blade optimization

引用本文

导出引用
张倩莹, 伊鹏辉, 刘兆方, 黄典贵. USST高性能水平轴风力机翼型族[J]. 太阳能学报. 2022, 43(10): 289-295 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0273
Zhang Qianying, Yin Penghui, Liu Zhaofang, Huang Diangui. USST HIGH PERFORMANCE AIRFOIL FAMILY FOR HORIZONTAL AXIS WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 289-295 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0273
中图分类号: TK83   

参考文献

[1] 庄月晴. Magnus效应作用下的风力机气动性能及流动控制的数值研究[D]. 上海: 上海大学, 2012.
ZHUANG Y Q.Numerical studies on the aerodynamic performance and flow control of the wind turbines with the Magnus effect[D]. Shanghai: Shanghai University, 2012.
[2] 战培国. 国外航空气动技术在风力机上的应用进展[J].航空科学技术, 2016, 27(10): 8-11.
ZHAN P G.Application of aerodynamic technology in wind turbine abroad[J]. Aeronautical science & echnology, 2016, 27(10): 8-11.
[3] 乔志德, 宋文萍, 高永卫. NPU-WA系列风力机翼型设计与风洞实验[J]. 空气动力学学报, 2012, 30(2): 260-265.
QIAO Z D, SONG W P, GAO Y W.Design and experiment of the NPU-WA airfoil family for wind turbines[J]. Acta aerodynamica sinica, 2012, 30(2): 260-265.
[4] TANFLER J L, SOMERS D M.NREL airfoil families for HAWTs[M]. National Renewable Energy Laboratory, 1995.
[5] PETER F, CHRISTAIN B.Development of the Risø wind turbine airfoils[J]. Wind energy, 2004, 7(2): 145-162.
[6] AIAA. Summary of the delft university wind turbine dedicated airfoils[J]. Journal of solar energy engineering, 2003, 125(4):11-21.
[7] 李新凯, 戴丽萍, 康顺. 风力机大厚度翼型增升减阻装置模拟研究[J]. 太阳能学报, 2015, 36(10): 2435-2441.
LI X K, DAI L P, KANG S.Simulation study of increase lift drag reduction device of large thickness airfoil of wind turbine[J]. Acta energiae solaris sinica, 2015, 36(10): 2435-2441.
[8] VAN D C P, MAYDA E, CHAO D, et al. Innovative structural and aerodynamic design approaches for large wind turbine blades[C]//2005 ASME Wind Energy Symposium/The 43th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 2005: 68-98.
[9] MAYDA E A, VAN D C P, CHAO D D, et al. Computational design and analysis of flatback airfoil wind tunnel experiment[R]. Sandia National Laboratories, 2008.
[10] STANDISH K J, VAN D C P. Aerodynamic analysis of blunt trailing edge airfoils[J]. Journal of solar energy engineering, 2003, 125(4): 479-487.
[11] 马林静, 陈江, 杜刚, 等. 尾缘厚度对风力机翼型气动特性影响参数化研究[J]. 太阳能学报, 2010, 31(8): 1060-1067.
MA L J, CHEN J, DU G, et al.Influence of trailing edge thickness on aerodynamic characteristics of wind turbine wing[J]. Acta energiae solaris sinica, 2010, 31(8): 1060-1067.
[12] JOSLIN R D.Overview of laminar flow control[R]. NASA TP-208705, 1998.
[13] JUN Z, ZHENG H G, HAO Z, et al.A high-speed nature laminar flow airfoil and its experimental study in wind tunnel with nonintrusive measurement technique[J]. Chinese journal of aeronautics, 2009, 22(3): 225-229.
[14] REDEKER G, HORSTMAN K H, KöSTER H, et al. Investigations on high reynolds number laminar flow airfoils[J]. Journal of aircraft, 1988, 25(7): 583-590.
[15] HICKS R M, HENNE P A.Wing design by numerical optimization[J]. Journal of aircraft, 1978, 15(7): 407-412.
[16] 吴志学. 水平轴风电机组叶片翼型气动性能优化研究[D]. 北京: 华北电力大学, 2019.
WU Z X.Aerodynamic performance optimization of horizontal axis wind turbine airfoil[D]. Beijing: North China Electric Power University, 2019.

基金

国家自然科学基金(51906155; 52036005)

PDF(1865 KB)

Accesses

Citation

Detail

段落导航
相关文章

/