MILD条件下氢-天然气混合燃烧特性及排放物分析

滕霖, 李西贵, 武玥, 刘斌, 王兰, 李卫东

太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 465-471.

PDF(1922 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1922 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 465-471. DOI: 10.19912/j.0254-0096.tynxb.2021-0294

MILD条件下氢-天然气混合燃烧特性及排放物分析

  • 滕霖1, 李西贵1, 武玥2, 刘斌2, 王兰2, 李卫东1
作者信息 +

ANALYSIS OF MIXED COMBUSTION CHARACTERISTICS AND EMISSIONS OF HYDROGEN AND NATURAL GAS UNDER MILD CONDITIONS

  • Teng Lin1, Li Xigui1, Wu Yue2, Liu Bin2, Wang Lan2, Li Weidong1
Author information +
文章历史 +

摘要

针对目前天然气掺氢后燃烧效率及氮氧化物排放研究较少的问题,应用组分输运模型、涡耗散概念燃烧模型和Do辐射模型,结合GRI-22化学反应机理,建立柔和燃烧模拟模型,通过与实验结果对比验证了模型的可靠性,进一步应用该模型分析不同掺氢比例对燃烧特性的影响。结果表明,随着掺氢比例增加,燃料与氧化剂的混合程度逐渐提高,混合气体的径向分量不断减小;由于反应速率和放热速率提高,燃烧器内部的温度升高,热力型氮氧化物含量增高,主要集中于燃烧器后端;燃料进口速度增大会导致燃烧器内燃烧不完全、出口处温度降低,氧气浓度升高,氮氧化物含量降低。研究发现,天然气中掺入氢气更有利于达到柔和燃烧条件。

Abstract

To address the using problem that the combustion efficiency and Nitrogen Oxides (NOx) emission of Natural Gas (NG) after hydrogen doping (H2) are less studied, using the component transport model, Eddy Dissipation Concept (EDC) combustion model and Do radiation model, at same time combining with the GRI-22 chemical reaction mechanism, to establish a soft (MILD, moderate or intense low oxygen dilution) combustion simulation model is established. The reliability of the model is verified by comparing it with the experimental results, and the model is further applied to analyze the effects of different hydrogen doping ratios on the combustion characteristics. The results show that with the increase of hydrogen doping ratio, the mixing degree of fuel and oxidant gradually increases, and the radial component of mixed gas decreases; due to the increase of reaction rate and exothermic rate, the temperature inside the burner increases, and the thermal NOx content increases, mainly concentrated in the back end of the burner; the increase of fuel inlet speed leads to incomplete combustion inside the burner, the temperature at the outlet decreases, the oxygen concentration increases and the NOx content decreases. It is found that hydrogen blending in natural gas is more favorable to achieve MILD combustion conditions.

关键词

天然气 / 氢气 / 计算流体动力学 / 燃烧特性 / 氮氧化物排放

引用本文

导出引用
滕霖, 李西贵, 武玥, 刘斌, 王兰, 李卫东. MILD条件下氢-天然气混合燃烧特性及排放物分析[J]. 太阳能学报. 2022, 43(10): 465-471 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0294
Teng Lin, Li Xigui, Wu Yue, Liu Bin, Wang Lan, Li Weidong. ANALYSIS OF MIXED COMBUSTION CHARACTERISTICS AND EMISSIONS OF HYDROGEN AND NATURAL GAS UNDER MILD CONDITIONS[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 465-471 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0294
中图分类号: TK91   

参考文献

[1] 冯文, 王淑娟, 倪维斗, 等. 氢能的安全性和燃料电池汽车的氢安全问题[J]. 太阳能学报, 2003(5): 677-82.
FENG W,WANG S J, NI W D, et al.The safety of hydrogen energy and fuel cell vehicles[J]. Acta energiae solaris sinica, 2003(5): 677-82.
[2] KOVAČ A, PARANOS M, MARCIUŠ D.Hydrogen in energy transition: a review[J]. International journal of hydrogen energy, 2021, 46(16): 10016-10035.
[3] CASTELLO P, TZIMAS E, MORETTO P.Techno-economic assessment of hydrogen transmission & distribution systems in Europe in the medium and long term[J]. Agricultural water management, 2015, 104(2): 53-58.
[4] ALIYU M, NEMITALLAH M A, SAID S A, et al.Characteristics of H2-enriched CH4O2 diffusion flames in a swirl-stabilized gas turbine combustor: experimental and numerical study[J]. International journal of hydrogen energy, 2016, 41(44): 20418-20432.
[5] SEPMAN A, ABTAHIZADEH E, MOKHOV A, et al.Experimental and numerical studies of the effects of hydrogen addition on the structure of a laminar methane-nitrogen jet in hot coflow under MILD conditions[J]. International journal of hydrogen energy, 2013, 38(31): 13802-13811.
[6] FAN B W,PAN J F, LIU Y X, et al.Effect of hydrogen injection strategies on mixture formation and combustion process in a hydrogen direct injection plus natural gas port injection rotary engine[J]. Energy conversion and management,2018,160: 150-164.
[7] FAN B W,ZHANG Y Y, PAN J F, et al.The influence of hydrogen injection strategy on mixture formation and combustion process in a port injection (PI) rotary engine fueled with natural gas/hydrogen blends[J]. Energy conversion and management, 2018, 173: 527-538.
[8] ZAREEI J, ROHANI A, WAN MAHMOOD W M F. Simulation of a hydrogen/natural gas engine and modelling of engine operating parameters[J]. International journal of hydrogen energy, 2018, 43(25):11639-11651.
[9] YU G, LAW C K, WU C K.Laminar flame speeds of hydrocarbon+air mixtures with hydrogen addition[J]. Combustion and flame, 1986, 63(3): 339-347.
[10] 刘晓东. 常温空气MILD燃烧的实验研究与火焰面模型的模拟[D]. 武汉: 华中科技大学, 2011: 1-82.
LIU X D.Experiments Study and flamelet model simnulations on MILD combustion under normal temperature air[D]. Wuhan: Huazhong University of Science & Techology, 2011: 1-82.
[11] TU Y J, XU S T, XIE M Q, et al.Numerical simulation of propane MILD combustion in a lab-scale cylindrical furnace[J]. Fuel, 2021, 290:119858.
[12] TU Y J, YANG W M, SIAH K B, et al.A comparative study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O[J]. Energy procedia, 2019, 158: 1473-1478.
[13] DALLY B B, KARPETIS A N, BARLOW R S.Structure of turbulent non-premixed jet flames in a diluted hot coflow[J]. Proceedings of the combustion institute, 2002, 29(1): 1147-1154.
[14] CHRISTO F C, DALLY B B.Modeling turbulent reacting jets issuing into a hot and diluted coflow[J]. Combustion and flame, 2005, 142(1): 117-129.
[15] KAZAKOV A F M. Reduced reaction sets based on GRIMech 1.2[M].
[16] 王锋. 甲烷富氧分段燃烧NOx排放特性的数值模拟[D].重庆: 重庆大学, 2009: 1-118.
WANG F.Numerical simulation for NOx emission characteristic of methane’s oxygen-enriched and staged combustion[D]. Chongqing: Chongqing University, 2009: 1-118.
[17] 朱锡锋, VENDERBOSCH R, 王俊三. 燃料理论空燃比与高位热值之间的关系[J]. 中国科学技术大学学报, 2004(1): 114-118.
ZHU X F,VENDERBOSCH R, WANG J S.Correlation between stoichiometrical ratio of air to fuel and its higher heating value[J]. Journal of Universities of Science and Technology of China, 2004(1): 114-118.
[18] 王国昌, 舒子云, 司济沧, 等. 二氧化碳、水和氮气稀释条件下甲烷MILD氧燃烧的实验研究[J]. 中国电机工程学报, 2020(18): 6312-6320.
WANG G C, SHU Z Y, SI J C, et al.Experimental investigation on MILD oxy-combustion of methane under CO2, H2O and N2 dilution[J]. Proceedings of the CSEE,2020.
[19] MARDANI A, KARIMI M M H. Hydrogen enrichment of methane and syngas for MILD combustion[J]. International journal of hydrogen energy, 2019, 44(18): 9423-9437.
[20] AMINIAN J, GALLETTI C, SHAHHOSSEINI S, et al.Numerical investigation of a MILD combustion burner: analysis of mixing field, chemical kinetics and turbulence-chemistry interaction[J]. Flow, turbulence and combustion, 2012, 88(4): 597-623.
[21] DE A, DONGRE A.Assessment of turbulence-chemistry interaction models in MILD combustion regime[J]. Flow, turbulence and combustion, 2015, 94(2): 439-4378.
[22] DE A, OLDENHOF E, SATHIAH P, et al.Numerical simulation of Delft-Jet-in-Hot-Coflow (DJHC) flames using the Eddy Dissipation Concept model for turbulence-chemistry interaction[J]. Flow, turbulence and combustion, 2011, 87(4): 537-5367.
[23] EVANS M J, MEDWELL P R, TIAN Z F.Modeling lifted jet flames in a heated coflow using an optimized eddy dissipation concept model[J]. Combustion science and technology, 2015, 187(7): 1093-1109.
[24] MEDWELL P R, KALT P A M, DALLY B B. Simultaneous imaging of OH, formaldehyde, and temperature of turbulent nonpremixed jet flames in a heated and diluted coflow[J]. Combustion and flame, 2007, 148(1): 48-61.
[25] NAJM H N, PAUL P H, MUELLER C J, et al.On the adequacy of certain experimental observables as measurements of flame burning rate[J]. Combustion and flame, 1998, 113(3): 312-332.
[26] SAGAR S M V, AGARWAL A K. Knocking behavior and emission characteristics of a port fuel injected hydrogen enriched compressed natural gas fueled spark ignition engine[J]. Applied thermal engineering, 2018, 141: 42-50.
[27] TANGOZ S, KAHRAMAN N, AKANSU S O.The effect of hydrogen on the performance and emissions of an SI engine having a high compression ratio fuelled by compressed natural gas[J]. International journal of hydrogen energy, 2017, 42(40): 25766-25780.

基金

重庆市自然科学基金(CYY202010102001); 河北省自然科学基金(E2019210036)

PDF(1922 KB)

Accesses

Citation

Detail

段落导航
相关文章

/