针对基础环式风电机组基础常见的开裂、冒浆现象,提出采用环氧树脂灌浆料修补T型法兰附近区域裂缝并填补磨空区。采用有限元软件ABAQUS建立未损坏基础和环氧树脂灌浆料加固后基础最不利截面处局部有限元模型,通过往复加载研究了基础的耗能性能,分析结果表明,环氧树脂材料加固后基础的耗能性能较加固前有大幅的提升。建立环氧树脂和水泥基两种不同灌浆材料加固后基础整体有限元模型,通过单调加载研究基础在极限荷载标准值和设计值下的应力应变分布,分析结果表明,和水泥基灌浆材料加固后的基础相比,环氧树脂材料灌浆加固后T型法兰和基础混凝土接触面的压应力分布更均匀,应力集中现象明显缓解,T型法兰上方混凝土塑性区范围明显减小。
Abstract
In order to solve the common cracking and slurry emitting problems in the embedded-ring foundation, the epoxy resin grouting material is proposed to repair the cracks and fill the cavities near the T-flange. The local finite element models at the weakest section of the undamaged foundation and the reinforced foundation by epoxy resin grouting material are developed by the finite element software ABAQUS. The energy dissipation capacity of the models under the reciprocating loading are studied . Numerical results show that the energy dissipation capacity is significantly improved after reinforcement. Then, two overall finite element models are established for the reinforced foundations grouted by epoxy-resin and cement-based materials, respectively. The stress and strain distribution of the foundations are investigated under monotone loading of the standard value and design value of ultimate load. Results show that the distribution of compressive stress on the interface between the T-flange and the foundation concrete for the foundation reinforced by epoxy resin material is more uniform. The stress concentration phenomenon is obviously alleviated and the plastic zone of concrete above the T-flange is obviously reduced.
关键词
风电机组 /
基础 /
有限元分析 /
环氧树脂 /
加固
Key words
wind turbines /
foundations /
finite element analysis /
epoxy resins /
strengthening
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 康明虎, 徐慧, 黄鑫. 基础环形式风机基础局部损伤分析. 太阳能学报, 2014, 35(4): 583-588.
KANG M H,XU H,HUANG X.Local damage analysis of near foundation ring in wind turbine foundation[J]. Acta energiae solaris sinica, 2014, 35(4): 583-588.
[2] 李大钧, 黄竹也, 高海飞, 等. 基础环埋深和法兰宽度对风机基础承载性状的影响[J]. 可再生能源, 2016, 34(5): 719-724.
LI D J, HUANG Z Y, GAO H F, et al.The bearing behaviors of the wind turbine foundation with various burial depths and flange widths[J]. Renewable energy resources, 2016, 34(5): 719-724.
[3] 吕伟荣, 何潇锟, 卢倍嵘, 等. 插环式风机基础疲劳损伤机理研究[J]. 建筑结构学报, 2018, 39(9): 140-148.
LYU W R, H X K, LU B R, et al. Fatigue damage mechanism of wind turbine foundation with foundation pipe[J]. Journal of building structures, 2018, 39(9): 140-148.
[4] 周敏, 吴继亮, 陈加兴, 等. 影响风电机组基础环与基础混凝土之间锚固性能的因素分析[J]. 太阳能, 2020, 11: 76-80.
ZHOU M, WU J L, CHEN J X, et al.Analysis of factors affecting anchoring performance between foundation ring and concrete of foundation of wind turbine[J]. Solar energy, 2020, 11: 76-80.
[5] GB 50017——2017,钢结构设计标准[S].
GB 50017——2017, Standard for design of steel structures[S].
[6] 汪宏伟. 采用环梁加固风机基础的有限元分析[J]. 可再生能源, 2016, 34(4): 558-562.
WANG H W.Finite element analysis of the wind turbine foundation reinforced with ring beam[J]. Renewable energy resources, 2016, 34(4): 558-562.
[7] 陈俊岭, 何欣恒, 冯又全. 风力发电塔础环基础疲劳破坏加固方法研究[J]. 太阳能学报, 2021, 42(2): 122-128.
CHEN J L, HE X H, FENG Y Q.Research on strengthening method for fatigue damage of embedded-ring concrete foundation for wind turbine tower[J]. Acta energiae solaris sinica, 2021, 42(2): 122-128.
[8] 张新国, 徐彬. 基于风电机塔筒振动对基础混凝土强度影响的探讨[J]. 武汉大学学报(工学版), 2017, 50(增):498-503.
ZHANG X G, XU B.Discussion on influence of wind turbine tower cylinder vibration on strength of foundation concrete[J]. Engineering journal of Wuhan University, 2017, 50(Suppl): 498-503.
[9] 刘帅栋,华锡江,龙海飚. 基础环侧壁混凝土局部破坏治理方法[J]. 武汉大学学报(工学版), 2018, 51(增):283-285.
LIU S D, HUA X J, LONG H B.Method for local damage control of concrete at side foundation ring[J]. Engineering journal of Wuhan University, 2018, 51(Suppl): 283-285.
[10] 高南, 张亚峰, 邝健政, 等. α,β-呋喃丙烯醛及其环氧树脂灌浆材料[J]. 高分子材料科学与工程, 2011,27(11): 171-175.
GAO N, ZHANG Y F, KUANG J Z, et al.α, β-furyl-acrolein and its epoxy grouting material[J]. Polymer materials science and engineering, 2011, 27(11): 171-175.
[11] MCINTYR S, KALTZAKORTA I, LIGGAT J J, et al.Influence of the epoxy structure on the physical properties of epoxy resin nanocomposites[J]. Industrial & engineering chemistry research, 2005, 44(23): 8573-8579.
[12] JC/T2379——2016,地基与基础处理用环氧树脂灌浆材料[S].
JC/T2379——2016, Epoxy resin grouts for ground and foundation treatment[S].
[13] LEE J, FENVES G L.Plastic-damage model for cyclic loading of concrete structures[J]. Journal of engineering mechanics, 1998, 124(8): 892-900.
[14] GB/T 50448——2015, 水泥基灌浆材料应用技术规范[S].
GB/T 50448——2015, Technical code for application of cementitious grout[S].