地震、风、浪作用下融合海水养殖的海上风力机耦合响应机理研究

张天翼, 李昕, 王文华

太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 243-251.

PDF(3780 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3780 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 243-251. DOI: 10.19912/j.0254-0096.tynxb.2021-0309

地震、风、浪作用下融合海水养殖的海上风力机耦合响应机理研究

  • 张天翼1,2, 李昕1,2, 王文华1,2
作者信息 +

RESEARCH OF COUPLING MECHANISMES OF OFFSHORE WIND TURBINE INTEGRATED WITH MARICULTURE UNDER EARTHQUAKE, WIND AND WAVE LOADS

  • Zhang Tianyi1,2, Li Xin1,2, Wang Wenhua1,2
Author information +
文章历史 +

摘要

为实现海洋空间立体化,最大化经济产出,提出一种单桩基础海上风电机组(OWT)融合海水养殖的新型增殖型海上风电机组结构(MOWTAC)。该研究提出基于时域耦合数值仿真工具FAST v8的新型增殖型海上风力机水动力计算模型,建立新型增殖型海上风力机在地震、风和波浪荷载作用下的整体耦合计算模型。进一步,开展地震组合工况作用下新型增殖型海上风力机整体结构动力响应计算。由计算结果可知,地震荷载为新型增殖型海上风力机在地震、风和波浪荷载作用下海上风力机结构响应的控制荷载。相比于风浪联合工况,新型增殖型风力机在地震荷载激励下2阶频率对于结构响应的影响显著增加。

Abstract

In order to make the best use of ocean resource and maximize economic benefits, a novel offshore wind turbine (OWT) with a breeding function(MOWTAC) is suggested, which is an integration of monopile OWT and mariculture. In the study, the hydrodynamic analysis model of MOWTAC is proposed based on the time-domain fully couple numerical simulation tool FAST v8, and the coupled analysis model of under earthquake, wind and wave loads is established in the updated FAST v8. Then, the dynamic characteristics and structural responses of MOWTAC under complex environmental conditions are analyzed, and the comparisons are carried out. According to the research, the dominant influence of seismic load on the structural responses of MOWTAC in the time domain is observed. Meanwhile, the influence of the second natural frequency on the structural response of MOWTAC increased significantly under seismic excitations, by comparing with wind and wave loads.

关键词

海上风力机 / 海水养殖 / 地震 / 耦合模型

Key words

offshore wind turbines / mariculture / earthquake / coupled model

引用本文

导出引用
张天翼, 李昕, 王文华. 地震、风、浪作用下融合海水养殖的海上风力机耦合响应机理研究[J]. 太阳能学报. 2022, 43(10): 243-251 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0309
Zhang Tianyi, Li Xin, Wang Wenhua. RESEARCH OF COUPLING MECHANISMES OF OFFSHORE WIND TURBINE INTEGRATED WITH MARICULTURE UNDER EARTHQUAKE, WIND AND WAVE LOADS[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 243-251 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0309
中图分类号: TK8   

参考文献

[1] 杨红生, 茹小尚, 张立斌, 等. 海洋牧场与海上风电融合发展:理念与展望[J]. 中国科学院院刊, 2019, 34(6): 700-707.
YANG H S, RU X S, ZHANG L B, et al.Industrial convergence of marine ranching and offshore wind power: concept and prospect[J]. Bulletin of Chinese academy of sciences, 2019, 34(6): 700-707.
[2] 江俊杰. 导管架风力机基础加装养殖网箱方案设计及力学性能分析[D]. 镇江: 江苏科技大学, 2017.
JIANG J J.Design and mechanical properties analysis of aquaculture net cage installed on jacket wind turbine base[D]. Zhenjiang: Jiangsu University of Science and Technology, 2017.
[3] CHU Y I, WANG C M.Hydrodynamic response analysis of combined spar wind turbine and fish cage for offshore fish farms[J]. International journal of structural stability and dynamics, 2020, 20(9): 2050104.
[4] ZHENG X Y, LEI Y.Stochastic response analysis for a floating offshore wind turbine integrated with a steel fish farming cage[J]. Applied sciences, 2018, 8(8): 12298.
[5] LEI Y, ZHAO S X, ZHENG X Y, et al.Effects of fish nets on the nonlinear dynamic performance of a floating offshore wind turbine integrated with a steel fish farming cage[J]. International journal of structural stability and dynamics, 2020, 20(3): 2050042.
[6] 孙久洋,吕涛,陈国明,等. 基于耐震时程法强震下导管架平台动力响应分析[J]. 振动与冲击, 2020, 39(20): 232-241.
SUN J Y, LYU T, CHEN G M, et al.Dynamic response analysis of a jacket platform under strong earthquake based on an endurance time method[J]. Journal of vibration and shock, 2020, 39(20): 232-241.
[7] 刘红军, 王超. 海上风电单桩基础周围土体地震液化分析[J]. 中国海洋大学学报(自然科学版), 2017, 47(4): 93-99.
LIU H J, WANG C.Study on seismic response and liquefaction of soil around pile foundation of offshore wind power[J]. Periodical of Ocean University of China, 2017, 47(4): 93-99.
[8] WANG W H, GAO Z, LI X, et al.Model test and numerical analysis of a multi-pile offshore wind turbine under seismic, wind, wave, and current loads[J]. Journal of offshore mechanics and arctic engineering, 2017, 139(3): 031901.
[9] 吴小峰, 朱斌, 汪玉冰. 水平环境荷载与地震动联合作用下的海上风力机单桩基础动力响应模型试验[J]. 岩土力学, 2019, 40(10): 3937-3944.
WU X F, ZHU B, WANG Y B.Dynamic model test on monopile for offshore wind turbine under jointed lateral environmental load and seismic load[J]. Rock and soil mechanics, 2019, 40(10): 3937-3944.
[10] 席仁强, 许成顺, 杜修力, 等. 风-波浪荷载对海上风力机地震响应的影响[J]. 工程力学, 2020, 37(11): 58-68.
XI R Q, XU C S, DU X L, et al.Effects of wind-wave loadings on the seismic response of offshore wind turbines[J]. Engineering mechanics, 2020, 37(11): 58-68.
[11] JONKMAN B, JONKMAN J.Guide to changes in FAST v8.16.00-bjj[R]. National Renewable Energy Laboratory(NREL/EL-500), 2016.
[12] 王国粹, 王伟, 杨敏. 3.6 MW海上风力机单桩基础设计与分析[J]. 岩土工程学报, 2011, 33(S2): 95-100.
WANG G C, WANG W, YANG M.Design and analysis of monopile foundation for 3.6 MW offshore wind turbine[J]. Chinese journal of geotechnical engineering, 2011, 33(S2): 95-100.
[13] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. NREL/TP-500-38060, 2009.
[14] DAMIANI R, JONKMAN J, HAYMAN J.SubDyn user’s guide and theory manual[R]. NREL/TP-5000-63062, 2016.
[15] 李颖, 王文华, 李昕. 地震作用下固定式海上风力机耦合反应分析[J]. 太阳能学报, 2019, 40(9): 2502-2508.
LI Y, WANG W H, LI X.Coupled analysis of fixed bottom offshore wind turbine under seismic loads[J]. Acta energiae solaris sinica, 2019, 40(9): 2502-2508.
[16] HANSEN M O L. Aerodynamics of wind turbine[M]. 2nd ed. London: Earthscan Publications Ltd, 2008: 45-52.
[17] JONKMAN J, ROBERSON A, HAYMAN G.HydroDyn user’s guide and theory manual[R]. National Renewable Energy Laboratory, 2013.
[18] SHI L.Dynamic analysis of semisubmersible offshore fish farm operated in China East Sea[D]. Trondheim: Norwegian University of Science and Technology, 2019.
[19] BORE P T.Ultimate- and fatigue limit state analysis of a rigid offshore aquaculture structure[D]. Trondheim: Norwegian University of Science and Technology, 2015.
[20] LØLAND G. Current forces on and flow through fish farms[D]. Trondheim: Norwegian University of Science and Technology, 1991.
[21] LØLAND G. Current forces on, and water flow through and around, floating fish farms[J]. Aquaculture international, 1993, 1(1): 72-89.
[22] LI L, JIANG Z Y, HOILAND A V, et al.Numerical analysis of a vessel-shaped offshore fish farm[J]. Journal of offshore mechanics and arctic engineering, 2018, 140(4): 041201.
[23] CLOUGH W R, PENZIEN J.Dynamics of structure[M]. 3rd. Ed. Berkeley: Computer and Structures Inc. 1995.
[24] DNV GL-ST-0437, Loads and site conditions for wind turbines(1 November2016)[S].

基金

国家自然科学基金(51939002); 广东省海洋经济发展(海洋六大产业)专项基金(粤自然资合[2020]016)

PDF(3780 KB)

Accesses

Citation

Detail

段落导航
相关文章

/