基于多储能技术经济性比较的可再生能源发电系统多目标容量优化

郭苏, 何意, 阿依努尔·库尔班, 宋国涛, 王豪威, 裴焕金

太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 424-431.

PDF(1624 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1624 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 424-431. DOI: 10.19912/j.0254-0096.tynxb.2021-0314

基于多储能技术经济性比较的可再生能源发电系统多目标容量优化

  • 郭苏1, 何意2, 阿依努尔·库尔班1, 宋国涛1, 王豪威1, 裴焕金1
作者信息 +

MULTI-OBJECTIVE CAPACITY OPTIMIZATION OF RENEWABLE ENERGY POWER SYSTEM CONSIDERING TECHNO-ECONOMIC COMPARISONS OF VARIOUS ENERGY STORAGE TECHNOLOGIES

  • Guo Su1, He Yi2, Aynur Kurban1, Song Guotao1, Wang Haowei1, Pei Huanjin1
Author information +
文章历史 +

摘要

研究基于蓄电池、熔盐储热、抽水蓄能及储氢技术经济性比较的可再生能源发电系统多目标容量优化。该容量优化模型以最小化平准化度电成本及失负荷率为目标,应用4种代表性多目标进化算法进行求解。提出基于超体积的多目标算法综合评价指标,此外考虑了储能运行特性及资源不确定性提高仿真计算的准确性。算法性能比较结果表明,非劣排序遗传算法的平均排序等级为1.6,其具有最优的综合性能;储能的定量技术经济性比较结果表明,不同可靠性条件下熔盐储热系统的经济性均为最优;不同负荷曲线及不同资源水平的敏感性分析验证了储能经济性比较结果的有效性。

Abstract

This paper conducted the multi-objective capacity optimization of renewable energy power system considering techno-economic comparisons of battery, thermal energy storage, pumped hydro storage and hydrogen storage. The multi-objective capacity optimization model considers the minimization of levelized cost of energy and loss probability of power supply, which is solved by four representative multi-objective evolutionary algorithms. This paper also proposes a comprehensive metric of algorithms based on hypervolume, and the device operation characteristics and resources uncertainties are considered to improve the accuracy of simulation. The comparative results of algorithms show that the average rank of non-dominated sorting genetic algorithm is 1.6, which has the best comprehensive performance. The quantitative techno-economic comparative results of energy storage show that thermal energy storage is the most cost-effective under different reliability conditions. The sensibility analyses of different load profile and different resource level verify the effectiveness of techno-economic comparative results.

关键词

可再生能源 / 储能 / 电力系统规划 / 多目标优化

引用本文

导出引用
郭苏, 何意, 阿依努尔·库尔班, 宋国涛, 王豪威, 裴焕金. 基于多储能技术经济性比较的可再生能源发电系统多目标容量优化[J]. 太阳能学报. 2022, 43(10): 424-431 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0314
Guo Su, He Yi, Aynur Kurban, Song Guotao, Wang Haowei, Pei Huanjin. MULTI-OBJECTIVE CAPACITY OPTIMIZATION OF RENEWABLE ENERGY POWER SYSTEM CONSIDERING TECHNO-ECONOMIC COMPARISONS OF VARIOUS ENERGY STORAGE TECHNOLOGIES[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 424-431 https://doi.org/10.19912/j.0254-0096.tynxb.2021-0314
中图分类号: TM615   

参考文献

[1] 谢鹏, 蔡泽祥, 刘平, 等. 考虑多时间尺度不确定性耦合影响的风光储微电网系统储能容量协同优化[J]. 中国电机工程学报, 2019, 39(24): 7126-7136.
XIE P, CAI Z X, LIU P, et al.Cooperative optimization of energy storage capacity for renewable and storage involved microgrids considering multi time scale uncertainty coupling influence[J]. Proceedings of the CSEE, 2019, 39(24): 7126-7136.
[2] JACOB S A, BANERJEE R, GHOSH C P.Sizing of hybrid energy storage system for a PV based microgrid through design space approach[J]. Applied energy, 2018, 212: 640-653.
[3] CHAUHAN A, SAINI R P.A review on integrated renewable energy system based power generation for stand-alone applications: configurations, storage options, sizing methodologies and control[J]. Renewable and sustainable energy reviews, 2014, 38: 99-120.
[4] KAABECHE A, BAKELLI Y.Renewable hybrid system size optimization considering various electrochemical energy storage technologies[J]. Energy conversion and management, 2019, 193: 162-175.
[5] 邓佃毅, 栗文义, 楚冰清, 等. 基于可靠性约束的风-光-储微网容量优化配置对配电网可靠性影响分析[J].太阳能学报, 2018, 39(9): 2439-2445.
DENG D Y, LI W Y, CHU B Q, et al.Reliability analysis of wind-photovoltaic-battery microgrids optimization configuration based on reliability constraints for distribution system[J]. Acta energiae solaris sinica, 2018, 39(9): 2439-2445.
[6] MA T, YANG H, LU L, et al.Optimal design of an autonomous solar-wind-pumped storage power supply system[J]. Applied energy, 2015, 160: 728-736.
[7] 赵波, 李得民, 吴在军, 等. 基于100%绿色能源供电目标的海岛微电网群容量优化配置[J]. 中国电机工程学报, 2021, 41(3): 932-945.
ZHAO B, LI D M, WU Z J, et al.Capacity optimal sizing of island microgrid clusters based on the 100% green energy power supply[J]. Proceedings of the CSEE, 2021, 41(3): 932-945.
[8] 邵志芳, 吴继兰. 基于动态电价风光电制氢容量配置优化[J]. 太阳能学报, 2020, 41(8): 227-235.
SHAO Z F, WU J L.Capacity configuration optimization of hydrogen production from wind and PV power based on dynamic electricity price[J]. Acta energiae solaris sinica, 2020, 41(8): 227-235.
[9] 李鹏, 韩建沛, 殷云星, 等. 电转氢作为灵活性资源的微网容量多目标优化配置[J]. 电力系统自动化, 2019, 43(17): 28-35, 139.
LI P, HAN J P, YIN Y X, et al.Multi-objective optimal capacity configuration of microgrid with power to hydrogen as flexible resource[J]. Automation of electric power systems, 2019, 43(17): 28-35, 139.
[10] 郭苏, 何意, 蒋川, 等. 风电-光伏-储热联合发电系统的多目标容量优化[J]. 太阳能学报, 2020, 41(11): 359-368.
GUO S, HE Y, JIANG C, et al.Capacity optimization of wind-photovoltaic-thermal energy storage-electric heater hybrid power sysyem[J]. Acta energiae solaris sinica, 2020, 41(11): 359-368.
[11] 汪致洵, 林湘宁, 刘畅, 等. 基于光热电站水电联产的独立海岛综合供给系统容量优化配置[J]. 中国电机工程学报, 2020, 40(16): 5192-5204.
WANG Z X, LIN X N, LIU C, et al.Optimal planning of integrated supply system in independent islands based on cogeneration of concentrating solar power plants[J]. Proceedings of the CSEE, 2020, 40(16): 5192-5204.
[12] ANOUNE K, BOUYAA M, ASTITOET A, et al.Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: a review[J]. Renewable and sustainable energy reviews, 2018, 93: 652-673.
[13] GHAFFARI A, ASKARZADEH A.Design optimization of a hybrid system subject to reliability level and renewable energy penetration[J]. Energy, 2020, 193: 116754.
[14] PETROLLESE M, COCCO D.Optimal design of a hybrid CSP-PV plant for achieving the full dispatchability of solar energy power plants[J]. Solar energy, 2016, 137: 477-489.
[15] XU X, HU W H, CAO D, et al.Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system[J]. Renewable energy, 2020, 147(Part 1): 1418-1431.
[16] JORDEHI A R.How to deal with uncertainties in electric power systems? A review[J]. Renewable and sustainable energy reviews, 2018, 96: 145-155.
[17] DEB K, PRATAP A, AGARWAL S, et al.A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary computation, 2002, 6(2): 182-197.
[18] ZHANG Q F, LI H.MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE transactions on evolutionary computation, 2007, 11(6): 712-731.
[19] COELLO C A C, LECHUGA M S. MOPSO: A proposal for multiple objective particle swarm optimization[C]// Proceedings of the 2002 Congress on Evolutionary Computation, Honolulu, HI, USA, 2002, 2: 1051-1056.
[20] ZITZLER E, THIELE L.Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE transactions on evolutionary computation, 1999, 3(4): 257-271.
[21] WHILE L, HINGSTON P, BARONE L, et al.A faster algorithm for calculating hypervolume[J]. IEEE transactions on evolutionary computation, 2006, 10(1): 29-38.
[22] National Renewable Energy Laboratory. System advisor model[R]. SAM2020.2.29(Last Version To Include Dish Stirling and Direct Steam Power Tower CSP Models).

基金

国家重点研发计划(2018YFE0128500); 华能集团总部科技项目(HNKJ20-H20); 中央高校业务费基金(B210202069)

PDF(1624 KB)

Accesses

Citation

Detail

段落导航
相关文章

/